Advertisement

A temperature-based diagnostic approach for paper-based microfluidics

  • A. Terzis
  • G. Yang
  • I. Zarikos
  • E. Elizalde
  • B. Weigand
  • A. Kalfas
  • X. Ding
Short Communication
  • 379 Downloads

Abstract

We present the potential of a quantitative temperature-based diagnostic approach for paper-based microfluidics, extending the work of Terzis et al. (J Colloid Interface Sci 504:751–757, 2017) which demonstrated a significant heat release at the liquid front during capillary-driven flows in cellulosic materials. Here, we investigate the applicability of biological fluids to provide a temperature rise at the imbibition front, and successfully demonstrate a monotonic trend between the level of local temperature rise and the concentration of specific analytes. In addition, effects of paper thickness and width are also examined.

Keywords

Paper-based microfluidics Quantitative diagnostics Capillary thermodynamics 

Notes

Acknowledgements

A. Terzis acknowledges the support of Alexander von Humboldt (AvH) foundation. I. Zarikos acknowledges the support received under the ERC Grant Agreement No. 341225. Special thanks go to Dr. Eleftheria Roumeli (California Institute of Technology) for characterizing the paper samples. The authors are also grateful to Prof. S. Majid Hassanizadeh (Utrecht University) for his overall contribution.

References

  1. Anderson DM, Linville A (1960) Temperature fluctuations accompanying water movement through porous media. Science 131(3410):1370–1371CrossRefGoogle Scholar
  2. Aslannejad H, Terzis A, Hassanizadeh SM, Weigand B (2017) Occurrence of temperature spikes at a wetting front during spontaneous imbibition. Sci Rep 7(1):7268CrossRefGoogle Scholar
  3. Böhm A, Carstens F, Trieb C, Schabel S, Biesalski M (2014) Engineering microfluidic papers: effect of fiber source and paper sheet properties on capillary-driven fluid flow. Microfluid Nanofluid 16(5):789–799CrossRefGoogle Scholar
  4. Castro C, Rosillo C, Tsutsui H (2017) Characterizing effects of humidity and channel size on imbibition in paper-based microfluidic channels. Microfluid Nanofluid 21(2):21CrossRefGoogle Scholar
  5. Cate DM, Adkins JA, Mettakoonpitak J, Henry CS (2015) Recent developments in paper-based microfluidic devices. Anal Chem 87(1):19–41CrossRefGoogle Scholar
  6. Cate DM, Dungchai W, Cunningham JC, Volckens J, Henry CS (2013) Simple, distance-based measurement for paper analytical devices. Lab Chip 13(12):2397–2404CrossRefGoogle Scholar
  7. Claxton G (1959) Detector for liquid–solid chromatography. J Chromatogr A 2:136–139CrossRefGoogle Scholar
  8. de Tarso Garcia P, Cardoso TMG, Garcia CD, Carrilho E, Coltro WKT (2014) A handheld stamping process to fabricate microfluidic paper-based analytical devices with chemically modified surface for clinical assays. RSC Adv 4(71):37637–37644CrossRefGoogle Scholar
  9. Dourado F, Gama FM, Chibowski E, Mota M (2012) Characterization of cellulose surface free energy. J Adhes Sci Technol 12(10):1081–1090CrossRefGoogle Scholar
  10. Dungchai W, Chailapakul O, Henry CS (2010) Use of multiple colorimetric indicators for paper-based microfluidic devices. Anal Chim Acta 674(2):227–233CrossRefGoogle Scholar
  11. Elizalde E, Urteaga R, Berli CLA (2015) Rational design of capillary-driven flows for paper-based microfluidics. Lab Chip 15(10):2173–2180CrossRefGoogle Scholar
  12. Elizalde E, Urteaga R, Berli CLA (2016) Precise capillary flow for paper-based viscometry. Microfluid Nanofluid 20(10):135CrossRefGoogle Scholar
  13. Evans E, Gabriel EFM, Coltro WKT, Garcia CD (2014) Rational selection of substrates to improve color intensity and uniformity on microfluidic paper-based analytical devices. Analyst 139(9):2127–2132CrossRefGoogle Scholar
  14. Fu E, Downs C (2017) Progress in the development and integration of fluid flow control tools in paper microfluidics. Lab Chip 17:614CrossRefGoogle Scholar
  15. Gabriel EFM, Garcia PT, Cardoso TMG, Lopes FM, Martins FT, Coltro WKT (2016) Highly sensitive colorimetric detection of glucose and uric acid in biological fluids using chitosan-modified paper microfluidic devices. Analyst 141(15):4749–4756CrossRefGoogle Scholar
  16. Halonen S, Kangas T, Haataja M, Lassi U (2016) Urea-water-solution properties: density, viscosity, and surface tension in an under-saturated solution. Emiss Control Sci Technol 3(2):161–170CrossRefGoogle Scholar
  17. Helmig R (1997) Multiphase flow and transport processes in the subsurface. Springer, BerlinCrossRefGoogle Scholar
  18. Hong S, Kim W (2015) Dynamics of water imbibition through paper channels with wax boundaries. Microfluid Nanofluid 19(4):845–853MathSciNetCrossRefGoogle Scholar
  19. Il Hong J, Chang B-Y (2014) Development of the smartphone-based colorimetry for multi-analyte sensing arrays. Lab Chip 14(10):1725–1732CrossRefGoogle Scholar
  20. Koivunen R, Jutila E, Bollström R, Gane P (2016) Hydrophobic patterning of functional porous pigment coatings by inkjet printing. Microfluid Nanofluid 20(6):83CrossRefGoogle Scholar
  21. Kuan C-M, Lin S-T, Yen T-H, Wang Y-L, Cheng C-M (2016) Paper-based diagnostic devices for clinical paraquat poisoning diagnosis. Biomicrofluidics 10(3):034118CrossRefGoogle Scholar
  22. Lankelma J, Nie Z, Carrilho E, Whitesides GM (2012) Paper-based analytical device for electrochemical flow-injection analysis of glucose in urine. Anal Chem 84(9):4147–4152CrossRefGoogle Scholar
  23. Li H, Han D, Pauletti GM, Steckl AJ (2014) Blood coagulation screening using a paper-based microfluidic lateral flow device. Lab Chip 14(20):4035–4041CrossRefGoogle Scholar
  24. Li X, Liu X (2014) Fabrication of three-dimensional microfluidic channels in a single layer of cellulose paper. Microfluid Nanofluid 16(5):819–827CrossRefGoogle Scholar
  25. Liu S, Su W, Ding X (2016) A review on microfluidic paper-based analytical devices for glucose detection. Sensors 16(12):2086CrossRefGoogle Scholar
  26. Martinez AW, Phillips DST, Butte DMJ, Whitesides PGM (2007) Patterned paper as a platform for inexpensive, low volume, portable bioassays. Angew Chem (Int Engl) 46(8):1318–1320CrossRefGoogle Scholar
  27. Martinez AW, Phillips ST, Whitesides GM, Carrilho E (2010) Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal Chem 82(1):3–10CrossRefGoogle Scholar
  28. Morbioli GG, Mazzu-Nascimento T, Stockton AM, Carrilho E (2017) Technical aspects and challenges of colorimetric detection with microfluidic paper-based analytical devices (\(\mu\)PADs) - A review. Anal Chim Acta 970:1–22CrossRefGoogle Scholar
  29. Nie Z, Deiss F, Liu X, Akbulut O, Whitesides GM (2010) Integration of paper-based microfluidic devices with commercial electrochemical readers. Lab Chip 10(22):3163–3169CrossRefGoogle Scholar
  30. Noiphung J, Songjaroen T, Dungchai W, Henry CS, Chailapakul O, Laiwattanapaisal W (2013) Electrochemical detection of glucose from whole blood using paper-based microfluidic devices. Anal Chim Acta 788:39–45CrossRefGoogle Scholar
  31. Schmid J, Zarikos I, Terzis A, Roth N, Weigand B (2018) Crystallization of urea from an evaporative aqueous solution sessile droplet at sub-boiling temperatures and surfaces with different wettability. Exp Therm Fluid Sci 91:80–88CrossRefGoogle Scholar
  32. Songjaroen T, Dungchai W, Chailapakul O, Henry CS, Laiwattanapaisal W (2012) Blood separation on microfluidic paper-based analytical devices. Lab Chip 12(18):3392–3398CrossRefGoogle Scholar
  33. Terzis A, Roumeli E, Weishaupt K, Brack S, Aslannejad H, Groß J, Hassanizadeh SM, Helmig R, Weigand B (2017) Heat release at the wetting front during capillary filling of cellulosic micro-substrates. J Colloid Interface Sci 504:751–757CrossRefGoogle Scholar
  34. Terzis A, Sauer E, Yang G, Groß J, Weigand B (2018) Characterisation of acid–base surface free energy components of urea–water solutions. Colloids Surf A Physicochem Eng Asp 538:774–780CrossRefGoogle Scholar
  35. VanOss CJ (2006) Interfacial forces in aqueous media, 2nd edn. CRC Press, Boca RatonCrossRefGoogle Scholar
  36. Walji N, MacDonald B (2016) Influence of geometry and surrounding conditions on fluid flow in paper-based devices. Micromachines 7(5):73CrossRefGoogle Scholar
  37. Washburn EW (1921) The dynamics of capillary flow. Phys Rev 17(3):273–283CrossRefGoogle Scholar
  38. Wu D, Zhang J, Xu F, Wen X, Li P, Zhang X, Qiao S, Ge S, Xia N, Qian S, Qiu X (2017) A paper-based microfluidic Dot-ELISA system with smartphone for the detection of influenza A. Microfluid Nanofluid 21(3):43CrossRefGoogle Scholar
  39. Yager P, Edwards T, Fu E, Helton K, Nelson K, Tam MR, Weigl BH (2006) Microfluidic diagnostic technologies for global public health. Nature 442(7101):412–418CrossRefGoogle Scholar
  40. Yamada K, Shibata H, Suzuki K, Citterio D (2017) Toward practical application of paper-based microfluidics for medical diagnostics: state-of-the-art and challenges. Lab Chip 21:1123Google Scholar
  41. Yetisen AK, Akram MS, Lowe CR (2013) Paper-based microfluidic point-of-care diagnostic devices. Lab Chip 13(12):2210–2251CrossRefGoogle Scholar
  42. Yetisen AK, Jiang N, Tamayol A, Ruiz-Esparza GU, Zhang YS, Medina-Pando S, Gupta A, Wolffsohn JS, Butt H, Khademhosseini A, Yun S-H (2017) Paper-based microfluidic system for tear electrolyte analysis. Lab Chip 28:1250Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Aerospace Thermodynamics (ITLR)University of StuttgartStuttgartGermany
  2. 2.Environmental Hydrogeology Group, Department of Earth SciencesUniversity of UtrechtUtrechtThe Netherlands
  3. 3.Laboratorio de Fluidodinámica, Facultad de Ingeniería UBACONICETBuenos AiresArgentina
  4. 4.School of EngineeringAristotle University of ThessalonikiThessaloníkiGreece
  5. 5.Institute for Personalised Medicine, School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations