Abstract
Originally applied to the accurate, passive positioning of submillimetric devices, recent works proved capillary selfalignment as effective also for larger components and relatively large initial offsets. In this paper, we describe an analytic quasistatic model of 1D capillary restoring forces that generalizes existing geometrical models and extends the validity to large displacements from equilibrium. The piecewise nature of the model accounts for contact line unpinning singularities ensuing from large perturbations of the liquid meniscus and dewetting of the bounding surfaces. The superior accuracy of the generalized model across the extended displacement range, and particularly beyond the elastic regime as compared to purely elastic models, is supported by finite element simulations and recent experimental evidence. Limits of the model are discussed in relation to the aspect ratio of the meniscus, contact angle hysteresis, tilting and selfalignment dynamics.
This is a preview of subscription content, access via your institution.
References
Abbasi S, Zhou A, Baskaran R, Böhringer KF (2008) Part tilting in capillarybased selfassembly: modeling and correction methods. In: IEEE 21st international conference on micro electro mechanical systems (MEMS 2008), pp 1060–1063
Arutinov G, Smits ECP, Mastrangeli M, Van Heck G, van den Brand J, Schoo HFM, Dietzel A (2012) Capillary selfalignment of mesoscopic foil components for sensorsystemsinfoil. J Micromech Microeng 22:115022
Arutinov G, Mastrangeli M, Smits ECP, Schoo HFM, Brugger J, Dietzel A (2013) Dynamics of capillary selfalignment for mesoscopic foil devices. Appl Phys Lett 102:144101
Arutinov G, Mastrangeli M, Smits ECP, Van Heck G, den Toonder JMJ, Dietzel A (2014) Foiltofoil system integration through capillary selfalignment directed by laser patterning. J Microelectromech Syst. doi:10.1109/JMEMS.2014.2321013
Berthier J, Brakke K (2012) The physics of microdroplets. Wiley and Scrivener Publishing, New York
Berthier J, Brakke K, Grossi F, Sanchez L, Di Cioccio L (2010) Selfalignment of silicon chips on wafers: a capillary approach. J Appl Phys 108:054905
Berthier J, Brakke K, Sanchez L, di Cioccio L (2011) Selfalignment of silicon chips on wafers: a numerical investigation of the effect of spreading and wetting. Sens Transducer J 13:44–52
Berthier J, Mermoz S, Brakke K, Sanchez L, Frétigny C, Di Cioccio L (2013) Capillary selfalignment of polygonal chips: a generalization for the shiftrestoring force. Microfluid Nanofluid 14:845–858
Brakke K (1992) The surface evolver. Exp Math 1:141–165
Broesch DJ, Frechette J (2012) From concave to convex: capillary bridges in slit pore geometry. Langmuir 28:15548–15554
Broesch DJ, Dutka F, Frechette J (2013) Curvature of capillary bridges as a competition between wetting and confinement. Langmuir 29:15558–15564
Broesch DJ, Shiang E, Frechette J (2014) Role of substrate aspect ratio on the robustness of capillary alignment. Appl Phys Lett 104:081605
Fukushima T, Iwata E, Ohara Y, Murugesan M, Bea J, Lee K, Tanaka T, Koyanagi M (2012) Multichiptowafer threedimensional integration technology using chip selfassembly with excimer lamp irradiation. IEEE Trans Electron Dev 59:2956–2963
Gao S, Zhou Y (2013) Selfalignment of microparts using capillary interaction: unified modeling and misalignment analysis. Microelectron Reliab 53:1137–1148
Jacobs HO, Tao AR, Schwartz A, Gracias DH, Whitesides GM (2002) Fabrication of a cylindrical display by patterned assembly. Science 296:323–325
Knuesel RJ, Jacobs HO (2010) Selfassembly of microscopic chiplets at a liquid–liquid–solid interface forming a flexible segmented monocrystalline solar cell. Proc Natl Acad Sci 107:993–998
Lambert P (ed) (2013) Surface tension in microsystems. Springer, Heidelberg
Lambert P (2007) Capillary forces in microassembly. Springer, Heidelberg
Lambert P, Mastrangeli M, Valsamis JB, Degrez G (2010) Spectral analysis and experimental study of lateral capillary dynamics for flipchip applications. Microfluid Nanofluid 9:797–807
Lanczos C (1970) The variational principles of mechanics. Dover, New York
Lenders C, Gauthier M, Cojan R, Lambert P (2012) ThreeDOF microrobotic platform based on capillary actuation. IEEE Trans Robot 28:1157–1161
Lienemann J, Greiner A, Korvink JG, Xiong X, Hanein Y, Böhringer KF (2004) Sensor update 13, (WileyVCH, 2004) Chap. Modeling, simulation, and experimentation of a promising new packaging technology: parallel fluidic selfassembly of microdevices, pp 3–43
Lienemann J, Weiss D, Greiner A, Kauzlaric D, Grünert O, Korvink JG (2012) Insight into the micro scale dynamics of a micro fluidic wettingbased conveying system by particle based simulation. Microsyst Technol 18:523–530
Limatainen V, Sariola V, Zhou Q (2013) Controlling liquid spreading using microfabricated undercut edges. Adv Mater 25:2275–2278
Mastrangeli M, Valsamis JB, van Hoof C, Celis JP, Lambert P (2010) Lateral capillary forces of cylindrical fluid menisci: a comprehensive quasistatic study. J Micromech Microeng 20:075041
Mastrangeli M, Ruythooren W, Celis JP, van Hoof C (2011) Challenges for capillary selfassembly of microsystems. IEEE Trans Compon Packag Manuf Technol 1:133–149
Patra SK, Lee YC (1991) Quasistatic modeling of the selfalignment mechanism in flipchip solderingpart I: single solder joint. J Electron Packag 113:337–342
Sato K, Itoa K, Hata S, Shimokohbe A (2003) Selfalignment of microparts using liquid surface tension–behavior of micropart and alignment characteristics. Precis Eng 27:42–50
Sariola V, Jääskeläinen M, Zhou Q (2010) Hybrid microassembly combining robotics and water droplet selfalignment. IEEE Trans Robot 26:965–977
Scott KL, Howe RT, Radke CJ (2003) Model for micropart planarization in capillarybased microassembly. In: 12th International conference on solidstate sensors, actuator and microsystems (transducers), vol 2, pp 1319–1322
Snoeijer JH, Andreotti B (2013) Moving contact lines: scales, regimes and dynamical transitions. Annu Rev Fluid Mech 45:269–292
Takei A, Matsumoto K, Shimoyama I (2010) Capillary torque caused by a liquid droplet sandwiched between two plates. Langmuir 26:2497–2504
Tsai CG, Hsieh CM, Yeh JA (2007) Selfalignment of microchips using surface tension and solid edge. Sens Actuator A Phys 139:343–349
Valsamis JB, Mastrangeli M, Lambert P (2013) Vertical excitation of axisymmetric liquid bridges. Eur J Mech B Fluid 38:47–57
Acknowledgments
This research has been funded by the Interuniversity Attraction Poles Program (IAP 7/38 MicroMAST) initiated by the Belgian Science Policy Office.
Author information
Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Supplementary material 1 (wmv 8379 KB)
Appendix: Model derivation
Appendix: Model derivation
In this section, we present the full derivation of the analytical model presented in the main text.
With reference to the geometry sketched in Fig. 1, we subsume the partial wetting of the surfaces of the pads in considering \(0<{\theta}_{{\rm t}}<{\theta}_{{\rm b}}<\pi /2\), yielding \(u_1=h\cot {\theta}_{{\rm b}}\) and \(u_2=h\cot {\theta}_{{\rm t}}\) according to Eq. (3). The alternative case of \(0<{\theta}_{{\rm b}}<{\theta}_{{\rm t}}<\pi /2\) differs only in the sequence of contact line unpinnings over the pads, its formulation being the same upon mutual replacement of t with b. Figure 8 provides the reference geometries for the estimation of the updated values \(h'\) and \(h''\) of \(h(u)\) upon transitions between regimes under conservation of meniscus volume.
The following holds under model assumptions:

1.
the surface energy \(E(u)\) coincides with the total free energy of the capillary system, and it is invariant under swapping of the surface energies of pads;

2.
partial wettability of the surfaces of the pads determines the existence of finite relative displacements \(u_i\) causing the sequential unpinning of the external contact lines (i.e., those whose vertical projection lies outside the opposite pads’ surface).
The analytical formulation of the model proceeds from the calculation of the energy \(E_j(u)\) of the system (Lienemann et al. 2004) for each regime \(R_j\) determined by sequential unpinning discontinuities. The lateral capillary force \(F_j(u)\) and stiffness \(k_j(u)\) of the meniscus are computed by subsequent partial derivatives over \(u\) of the energy function.
The energy of the global equilibrium state \(R_{0}\) is (up to an additional arbitrary constant):
For the deformed states \(R_1\) and \(R_2\):
using Eq. (1) and the following approximation for the constancy of \(h\) (see Fig. 8a):
Similarly for \(R_3\):
using the approximation (see Fig. 8b):
Equation (11), more stringent than Eq. (9), sets the strict limit of validity of the model over \(u\) under the assumptions of constant \(V\) and \(h\). This condition assumes and is consistent with choices of coupled pairs of \(\theta_*\) satisfying the condition set by Eq. (5) for overflowless transition between adjacent capillary regimes. Equation (11) defines \(u_{{\rm max}}(\theta_*,h)\) and relates it to the pad size \(L\) rather than to \(h\) (\(L \gg h\) in general) as in purely elastic models. Given \(L=1 \,\hbox {mm}, h\) and \(\theta_*\), the relative errors in capillary force estimates between analytical and numerical models for each of the cases reported in Table 1 of the main text were evaluated for the corresponding value:
From Eqs. (7), (8) and (10) it follows, respectively:
The formulation is consistent with energy and force continuity across adjacent domains, since \(E_{i+1}(u_i)=E_i(u_i)\) and \(F_{i+1}(u_i)=F_i(u_i)\) hold for all \(i = 0,1,2\). Note that for \(R_1_{0<u<h}\) the small displacement values \(F_1=2\gamma L \frac{u}{h}\) and \(k_1=2 \gamma \frac{L}{h}\) of linear elastic models are recovered (Tsai et al. 2007; Mastrangeli et al. 2010; Lambert et al. 2010; Berthier et al. 2010). Conversely, the absence of elastic work in \(R_3\) is evidenced by the null constant value of \(k_3\). Also, \({\theta}_{{\rm t}} \rightarrow {\theta}_{{\rm b}}\) implies a singular domain for \(R_2\) as \(u_2 \rightarrow u_1\). Particularly, for the limiting case of full wetting of both pads—i.e., for \({\theta}_{{\rm b}} = {\theta}_{{\rm t}} = 0\)—\(u_1 \rightarrow \infty\), i.e., the domain of \(R_1\) extends indefinitely. The purely elastic regime is thus recovered, whereby partial dewetting of the surface of the pads is not possible. In this ideal condition, further model convergence is given by \(F_1_{u \gg h} = F_3_{{\theta}_{{\rm b}}={\theta}_{{\rm t}}=0}\). Plots of energy, gap and restoring force versus \(u\) for \(\hbox {AR} = 1/20\) and \(1/10\) (\(h = 50\) and \(100 \,\upmu \hbox {m}\), respectively) are shown in Figs. 9, 10, 11, 12, 13 and 14—complementing those for \({\rm AR} = 1/40\) presented in the main text.
Finally, by considering meniscus confinement within the pads by chemical contrast (Fig. 2b) rather than by topographical step, the formal derivation shown above can be adapted to account for the case of liquid bridge overflow (Lienemann et al. 2004). Overflow is here supposed to take place beyond the edge of the bottom pad onto an adjacent and less wettable surface (see Fig. 15). The case of overflow beyond the top pad is energetically equivalent. We assume that the two (pad and adjacent) surfaces are at the same level and that the energetic barrier to overflow is only chemical in nature. For the less wettable surface, the validity of a specific Young–Dupré equation is also assumed, yielding a contact angle \({\theta}_{{\rm b}}^{{\rm of}}>\pi /2>{\theta}_{{\rm b}}\). The overflow happens when the edge angle of the meniscus reaches the advancing value of the contact angle on the adjacent surface (hereby again assumed to coincide with its static value \({\theta}_{{\rm b}}^{{\rm of}}\)), prompting the unpinning of the contact line toward the adjacent surface. Unpinning takes place for \(u \ge u_{{\rm of}}\) and signals the transition to a regime akin to either the mixed (\(R_2^{{\rm of}}\)) or the full sliding one (\(R_3^{{\rm of}}\)). \(u_{{\rm of}}\) can be either larger or smaller than \(u_1\), yet not larger than \(u_2\) because in \(R_3\) the inclinations of both perpendicular sides of the meniscus remain constant. For the former case of \(0<u_{{\rm of}}<u_1\) (Fig. 15a):
For the latter case of \(u_1<u_{{\rm of}}\) (Fig. 15b):
Rights and permissions
About this article
Cite this article
Mastrangeli, M., Arutinov, G., Smits, E.C.P. et al. Modeling capillary forces for large displacements. Microfluid Nanofluid 18, 695–708 (2015). https://doi.org/10.1007/s1040401414699
Received:
Accepted:
Published:
Issue Date:
Keywords
 Contact Angle
 Contact Line
 Capillary Force
 Liquid Bridge
 Contact Angle Hysteresis