Modeling capillary forces for large displacements

Abstract

Originally applied to the accurate, passive positioning of submillimetric devices, recent works proved capillary self-alignment as effective also for larger components and relatively large initial offsets. In this paper, we describe an analytic quasi-static model of 1D capillary restoring forces that generalizes existing geometrical models and extends the validity to large displacements from equilibrium. The piece-wise nature of the model accounts for contact line unpinning singularities ensuing from large perturbations of the liquid meniscus and dewetting of the bounding surfaces. The superior accuracy of the generalized model across the extended displacement range, and particularly beyond the elastic regime as compared to purely elastic models, is supported by finite element simulations and recent experimental evidence. Limits of the model are discussed in relation to the aspect ratio of the meniscus, contact angle hysteresis, tilting and self-alignment dynamics.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Abbasi S, Zhou A, Baskaran R, Böhringer KF (2008) Part tilting in capillary-based self-assembly: modeling and correction methods. In: IEEE 21st international conference on micro electro mechanical systems (MEMS 2008), pp 1060–1063

  2. Arutinov G, Smits ECP, Mastrangeli M, Van Heck G, van den Brand J, Schoo HFM, Dietzel A (2012) Capillary self-alignment of mesoscopic foil components for sensor-systems-in-foil. J Micromech Microeng 22:115022

    Article  Google Scholar 

  3. Arutinov G, Mastrangeli M, Smits ECP, Schoo HFM, Brugger J, Dietzel A (2013) Dynamics of capillary self-alignment for mesoscopic foil devices. Appl Phys Lett 102:144101

    Article  Google Scholar 

  4. Arutinov G, Mastrangeli M, Smits ECP, Van Heck G, den Toonder JMJ, Dietzel A (2014) Foil-to-foil system integration through capillary self-alignment directed by laser patterning. J Microelectromech Syst. doi:10.1109/JMEMS.2014.2321013

  5. Berthier J, Brakke K (2012) The physics of microdroplets. Wiley and Scrivener Publishing, New York

    Google Scholar 

  6. Berthier J, Brakke K, Grossi F, Sanchez L, Di Cioccio L (2010) Self-alignment of silicon chips on wafers: a capillary approach. J Appl Phys 108:054905

    Article  Google Scholar 

  7. Berthier J, Brakke K, Sanchez L, di Cioccio L (2011) Self-alignment of silicon chips on wafers: a numerical investigation of the effect of spreading and wetting. Sens Transducer J 13:44–52

    Google Scholar 

  8. Berthier J, Mermoz S, Brakke K, Sanchez L, Frétigny C, Di Cioccio L (2013) Capillary self-alignment of polygonal chips: a generalization for the shift-restoring force. Microfluid Nanofluid 14:845–858

    Article  Google Scholar 

  9. Brakke K (1992) The surface evolver. Exp Math 1:141–165

    Article  MATH  MathSciNet  Google Scholar 

  10. Broesch DJ, Frechette J (2012) From concave to convex: capillary bridges in slit pore geometry. Langmuir 28:15548–15554

    Article  Google Scholar 

  11. Broesch DJ, Dutka F, Frechette J (2013) Curvature of capillary bridges as a competition between wetting and confinement. Langmuir 29:15558–15564

    Article  Google Scholar 

  12. Broesch DJ, Shiang E, Frechette J (2014) Role of substrate aspect ratio on the robustness of capillary alignment. Appl Phys Lett 104:081605

    Article  Google Scholar 

  13. Fukushima T, Iwata E, Ohara Y, Murugesan M, Bea J, Lee K, Tanaka T, Koyanagi M (2012) Multichip-to-wafer three-dimensional integration technology using chip self-assembly with excimer lamp irradiation. IEEE Trans Electron Dev 59:2956–2963

    Article  Google Scholar 

  14. Gao S, Zhou Y (2013) Self-alignment of micro-parts using capillary interaction: unified modeling and misalignment analysis. Microelectron Reliab 53:1137–1148

    Article  Google Scholar 

  15. Jacobs HO, Tao AR, Schwartz A, Gracias DH, Whitesides GM (2002) Fabrication of a cylindrical display by patterned assembly. Science 296:323–325

    Article  Google Scholar 

  16. Knuesel RJ, Jacobs HO (2010) Self-assembly of microscopic chiplets at a liquid–liquid–solid interface forming a flexible segmented monocrystalline solar cell. Proc Natl Acad Sci 107:993–998

    Article  Google Scholar 

  17. Lambert P (ed) (2013) Surface tension in microsystems. Springer, Heidelberg

    Google Scholar 

  18. Lambert P (2007) Capillary forces in microassembly. Springer, Heidelberg

    Google Scholar 

  19. Lambert P, Mastrangeli M, Valsamis J-B, Degrez G (2010) Spectral analysis and experimental study of lateral capillary dynamics for flip-chip applications. Microfluid Nanofluid 9:797–807

    Article  Google Scholar 

  20. Lanczos C (1970) The variational principles of mechanics. Dover, New York

    Google Scholar 

  21. Lenders C, Gauthier M, Cojan R, Lambert P (2012) Three-DOF microrobotic platform based on capillary actuation. IEEE Trans Robot 28:1157–1161

    Article  Google Scholar 

  22. Lienemann J, Greiner A, Korvink JG, Xiong X, Hanein Y, Böhringer KF (2004) Sensor update 13, (Wiley-VCH, 2004) Chap. Modeling, simulation, and experimentation of a promising new packaging technology: parallel fluidic self-assembly of microdevices, pp 3–43

  23. Lienemann J, Weiss D, Greiner A, Kauzlaric D, Grünert O, Korvink JG (2012) Insight into the micro scale dynamics of a micro fluidic wetting-based conveying system by particle based simulation. Microsyst Technol 18:523–530

    Article  Google Scholar 

  24. Limatainen V, Sariola V, Zhou Q (2013) Controlling liquid spreading using microfabricated undercut edges. Adv Mater 25:2275–2278

    Article  Google Scholar 

  25. Mastrangeli M, Valsamis J-B, van Hoof C, Celis J-P, Lambert P (2010) Lateral capillary forces of cylindrical fluid menisci: a comprehensive quasi-static study. J Micromech Microeng 20:075041

    Article  Google Scholar 

  26. Mastrangeli M, Ruythooren W, Celis J-P, van Hoof C (2011) Challenges for capillary self-assembly of microsystems. IEEE Trans Compon Packag Manuf Technol 1:133–149

    Article  Google Scholar 

  27. Patra SK, Lee YC (1991) Quasi-static modeling of the self-alignment mechanism in flip-chip soldering-part I: single solder joint. J Electron Packag 113:337–342

    Article  Google Scholar 

  28. Sato K, Itoa K, Hata S, Shimokohbe A (2003) Self-alignment of microparts using liquid surface tension–behavior of micropart and alignment characteristics. Precis Eng 27:42–50

    Article  Google Scholar 

  29. Sariola V, Jääskeläinen M, Zhou Q (2010) Hybrid microassembly combining robotics and water droplet self-alignment. IEEE Trans Robot 26:965–977

    Article  Google Scholar 

  30. Scott KL, Howe RT, Radke CJ (2003) Model for micropart planarization in capillary-based microassembly. In: 12th International conference on solid-state sensors, actuator and microsystems (transducers), vol 2, pp 1319–1322

  31. Snoeijer JH, Andreotti B (2013) Moving contact lines: scales, regimes and dynamical transitions. Annu Rev Fluid Mech 45:269–292

    Article  MathSciNet  Google Scholar 

  32. Takei A, Matsumoto K, Shimoyama I (2010) Capillary torque caused by a liquid droplet sandwiched between two plates. Langmuir 26:2497–2504

    Article  Google Scholar 

  33. Tsai CG, Hsieh CM, Yeh JA (2007) Self-alignment of microchips using surface tension and solid edge. Sens Actuator A Phys 139:343–349

    Article  Google Scholar 

  34. Valsamis J-B, Mastrangeli M, Lambert P (2013) Vertical excitation of axisymmetric liquid bridges. Eur J Mech B Fluid 38:47–57

    Article  Google Scholar 

Download references

Acknowledgments

This research has been funded by the Interuniversity Attraction Poles Program (IAP 7/38 MicroMAST) initiated by the Belgian Science Policy Office.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Massimo Mastrangeli.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (wmv 8379 KB)

Appendix: Model derivation

Appendix: Model derivation

In this section, we present the full derivation of the analytical model presented in the main text.

With reference to the geometry sketched in Fig. 1, we subsume the partial wetting of the surfaces of the pads in considering \(0<{\theta}_{{\rm t}}<{\theta}_{{\rm b}}<\pi /2\), yielding \(u_1=h\cot {\theta}_{{\rm b}}\) and \(u_2=h\cot {\theta}_{{\rm t}}\) according to Eq. (3). The alternative case of \(0<{\theta}_{{\rm b}}<{\theta}_{{\rm t}}<\pi /2\) differs only in the sequence of contact line unpinnings over the pads, its formulation being the same upon mutual replacement of t with b. Figure 8 provides the reference geometries for the estimation of the updated values \(h'\) and \(h''\) of \(h(u)\) upon transitions between regimes under conservation of meniscus volume.

The following holds under model assumptions:

  1. 1.

    the surface energy \(E(u)\) coincides with the total free energy of the capillary system, and it is invariant under swapping of the surface energies of pads;

  2. 2.

    partial wettability of the surfaces of the pads determines the existence of finite relative displacements \(u_i\) causing the sequential unpinning of the external contact lines (i.e., those whose vertical projection lies outside the opposite pads’ surface).

Fig. 8
figure8

Sketches (not to scale) for geometrical estimation of \(h'\) and \(h''\) under model assumptions upon transitions between adjacent regimes: a from \(R_1\) to \(R_2\)b from \(R_2\) to \(R_3\)

The analytical formulation of the model proceeds from the calculation of the energy \(E_j(u)\) of the system (Lienemann et al. 2004) for each regime \(R_j\) determined by sequential unpinning discontinuities. The lateral capillary force \(F_j(u)\) and stiffness \(k_j(u)\) of the meniscus are computed by subsequent partial derivatives over \(u\) of the energy function.

The energy of the global equilibrium state \(R_{0}\) is (up to an additional arbitrary constant):

$$E_{0} = E(u_{0}=0) = \underbrace{L^2(\gamma_{{\rm sl}}^{\rm t} + \gamma_{{\rm sl}}^{\rm b})}_{{\rm pads}} + \underbrace{4\frac{V}{L}\gamma }_{{\rm meniscus}}$$
(6)

For the deformed states \(R_1\) and \(R_2\):

$$\begin{aligned} E_1&= E(0 \le u \le u_1) \\ &= \underbrace{L^2(\gamma_{{\rm sl}}^{\rm t} + \gamma_{{\rm sl}}^{\rm b})}_{{\rm pads}} + \underbrace{2\frac{V}{L}\gamma }_{{\rm lateral}} + \underbrace{2\gamma L \sqrt{h^2+u^2}}_{{\text {front}}\, \&\,{\text{rear }}} \\ &= E_{0} - 2\frac{V}{L}\gamma + 2\gamma L \sqrt{h^2+u^2} \end{aligned}$$
(7)
$$\begin{aligned} E_2&= E(u_1 \le u \le u_2)\\ &= \underbrace{L^2\gamma_{{\rm sl}}^{\rm t}}_{{\rm top}\,{\rm pad}} + \underbrace{L(u-u_1)\gamma_{{\rm sv}}^{\rm b} + L[L-(u-u_1)]\gamma_{{\rm sl}}^{\rm b}}_{{\rm bottom}\,{\rm pad}}\\ &\quad +\,\underbrace{2\gamma \frac{V}{L}}_{{\rm lateral}} + \underbrace{\gamma L \sqrt{h'^2+u_1^2}}_{{\rm rear}} + \underbrace{\gamma L \sqrt{h'^2+u^2}}_{{\rm front}}\\ &= E_1(u_1) + \gamma L \left(\sqrt{h'^2+u^2} - \sqrt{h'^2+u_1^2}\right)\\ &\quad+ (\gamma_{{\rm sv}}^{\rm b}-\gamma_{{\rm sl}}^{\rm b})L(u-u_1) \\ &\cong {\rm const} +\,\gamma L \sqrt{h^2+u^2} + \gamma L (u-u_1)\cos ({\theta}_{{\rm b}}) \end{aligned}$$
(8)

using Eq. (1) and the following approximation for the constancy of \(h\) (see Fig. 8a):

$$\begin{aligned} h'&= h\frac{L}{L-\frac{u-u_1}{2}} \\ &= h\left(1+\frac{u-u_1}{2L}\right)+o^2(u-u_1) \\ &\cong h \,{\text {for}}\,u \ll 2L+u_1 = 2L+h\cot {\theta}_{{\rm b}} \\ \end{aligned}$$
(9)

Similarly for \(R_3\):

$$\begin{aligned} E_3&= E(u_2 \le u < u_{{\rm max}}) \\&= \underbrace{2\frac{V}{L}\gamma }_{{\rm lateral}} + \underbrace{\gamma L\sqrt{h''^2+u_1^2}}_{{\rm rear}} + \underbrace{\gamma L\sqrt{h''^2+u_2^2}}_{{\rm front}} \\ &\quad+ \underbrace{L(u-u_1)\gamma_{{\rm sv}}^{\rm b} + L[L-(u-u_1)]\gamma_{{\rm sl}}^{\rm b}}_{{\rm bottom}\,{\rm pad}} \\ &\quad+ \underbrace{L(u-u_2)\gamma_{{\rm sv}}^{\rm t} + L[L-(u-u_2)]\gamma_{{\rm sl}}^{\rm t}}_{{\rm top}\,{\rm pad}} \\&\cong E_2(u_2) + \gamma L (u-u_2)(\cos {\theta}_{{\rm b}} + \cos {\theta}_{{\rm t}}) \end{aligned}$$
(10)

using the approximation (see Fig. 8b):

$$\begin{aligned} h''&= h\frac{L}{L-(u-\frac{u_1+u_2}{2})} \\&\cong h \,{\text {for}}\,\, u \ll L+\frac{u_1+u_2}{2} = L+\frac{h}{2}(\cot {\theta}_{{\rm b}} + \cot {\theta}_{{\rm t}}) \\ \end{aligned}$$
(11)

Equation (11), more stringent than Eq. (9), sets the strict limit of validity of the model over \(u\) under the assumptions of constant \(V\) and \(h\). This condition assumes and is consistent with choices of coupled pairs of \(\theta_*\) satisfying the condition set by Eq. (5) for overflow-less transition between adjacent capillary regimes. Equation (11) defines \(u_{{\rm max}}(\theta_*,h)\) and relates it to the pad size \(L\) rather than to \(h\) (\(L \gg h\) in general) as in purely elastic models. Given \(L=1 \,\hbox {mm}, h\) and \(\theta_*\), the relative errors in capillary force estimates between analytical and numerical models for each of the cases reported in Table 1 of the main text were evaluated for the corresponding value:

$$u_{{\rm max}}= \frac{1}{10}\left[ L+\frac{h}{2}(\cot {\theta}_{{\rm b}} + \cot {\theta}_{{\rm t}})\right] .$$
(12)

From Eqs. (7), (8) and (10) it follows, respectively:

$$R_1 \left\{ \begin{array}{ll} \begin{aligned} F_1(u) &= -\frac{\partial E_1(u)}{\partial u} = -2\gamma L \frac{u}{\sqrt{h^2+u^2}} \\ k_1(u) &= -\frac{\partial F_1(u)}{\partial u} = \frac{\partial ^2 E_1(u)}{\partial u^2} \\ &= 2 \gamma L \left(\frac{1}{\sqrt{h^2+u^2}}-\frac{u^2}{(h^2+u^2)^{\frac{3}{2}}}\right) \end{aligned} \end{array}\right.$$
(13)
$$R_2 \left\{ \begin{array}{ll}\begin{aligned} F_2(u) &= -\frac{\partial E_2(u)}{\partial u} = -\gamma L (\frac{u}{\sqrt{h^2+u^2}} + \cos {\theta}_{{\rm b}}) \\ k_2(u) &= -\frac{\partial F_2(u)}{\partial u} = \frac{\partial ^2 E_2(u)}{\partial u^2} \\ &= \gamma L (\frac{1}{\sqrt{h^2+u^2}}-\frac{u^2}{(h^2+u^2)^{\frac{3}{2}}}) \\ &= \frac{k_1(u)}{2}\end{aligned} \end{array}\right.$$
(14)
$$R_3 \left\{ \begin{array}{ll}\begin{aligned} F_3(u) &= -\frac{\partial E_2(u)}{\partial u} = -\gamma L (\cos {\theta}_{{\rm b}} + \cos {\theta}_{{\rm t}}) \\ k_3(u) &= -\frac{\partial F_3(u)}{\partial u} = \frac{\partial ^2 E_3(u)}{\partial u^2} \\ &= 0 \end{aligned}\end{array}\right.$$
(15)

The formulation is consistent with energy and force continuity across adjacent domains, since \(E_{i+1}(u_i)=E_i(u_i)\) and \(F_{i+1}(u_i)=F_i(u_i)\) hold for all \(i = 0,1,2\). Note that for \(R_1|_{0<u<h}\) the small displacement values \(F_1=-2\gamma L \frac{u}{h}\) and \(k_1=2 \gamma \frac{L}{h}\) of linear elastic models are recovered (Tsai et al. 2007; Mastrangeli et al. 2010; Lambert et al. 2010; Berthier et al. 2010). Conversely, the absence of elastic work in \(R_3\) is evidenced by the null constant value of \(k_3\). Also, \({\theta}_{{\rm t}} \rightarrow {\theta}_{{\rm b}}\) implies a singular domain for \(R_2\) as \(u_2 \rightarrow u_1\). Particularly, for the limiting case of full wetting of both pads—i.e., for \({\theta}_{{\rm b}} = {\theta}_{{\rm t}} = 0\)\(u_1 \rightarrow \infty\), i.e., the domain of \(R_1\) extends indefinitely. The purely elastic regime is thus recovered, whereby partial dewetting of the surface of the pads is not possible. In this ideal condition, further model convergence is given by \(F_1|_{u \gg h} = F_3|_{{\theta}_{{\rm b}}={\theta}_{{\rm t}}=0}\). Plots of energy, gap and restoring force versus \(u\) for \(\hbox {AR} = 1/20\) and \(1/10\) (\(h = 50\) and \(100 \,\upmu \hbox {m}\), respectively) are shown in Figs. 9, 10, 11, 12, 13 and 14—complementing those for \({\rm AR} = 1/40\) presented in the main text.

Fig. 9
figure9

SE simulations for \(h_{0} = 50\,\upmu\hbox{m}\) \((\hbox {AR} = 1/20\)) parameterized by \({\theta}_{{\rm b}}\)\({\theta}_{{\rm t}}\) pairs. a Total energy \(E(u)-E(0)\) versus \(u.\) b Normalized gap \((h-h_{0})/h_{0}\) versus \(u\)

Fig. 10
figure10

SE simulation and analytical fit of \(F(u)\) versus \(u\) for \(h_{0} = 50 \,\upmu\hbox{m}\) \((\hbox {AR} = 1/20\)) with \({\theta}_{{\rm b}} = 65^{\circ }\) and \({\theta}_{{\rm t}} = 50^{\circ}\). The relative error for \(F(u=u_{{\rm max}})\) is \(7.3 \,\%\)

Fig. 11
figure11

Capillary forces predicted for h = 50 μm (AR = 1/20) and various combinations of \({\theta}_{{\rm b}}\) and \({\theta}_{{\rm t}}\) values. a Perfect wetting (no contact line unpinning). b The three sequential regimes, first unpinning on bottom pad. c Absence of second regime for \({\theta}_{{\rm b}} = {\theta}_{{\rm t}}\) (\(u_{1}=u_{2}=u_{d},\,F_{1}(u_{d})=F_{2}(u_{d})=F_{3}(u_{d})\)). d The three sequential regimes, first unpinning on top pad

Fig. 12
figure12

SE simulations for \(h_{0} = 50\,\upmu\hbox{m}\) \((\hbox {AR} = 1/20\)) parameterized by \({\theta}_{{\rm b}}\)\({\theta}_{{\rm t}}\) pairs. a Total energy \(E(u)-E(0)\) versus \(u.\) b Normalized gap \((h-h_{0})/h_{0}\) versus \(u\)

Fig. 13
figure13

SE simulation and analytical fit of \(F(u)\) versus \(u\) for \(h_{0} = 100\,\upmu\hbox{m}\) \((\hbox {AR} = 1/10\)) with \({\theta}_{{\rm b}} = 65^{\circ }\) and \({\theta}_{{\rm t}} = 50^{\circ}\). Relative error for \(F(u=u_{{\rm max}})\) is \(7.4 \,\%\)

Fig. 14
figure14

Capillary forces predicted for h = 100 μm (AR = 1/10) and various combinations of \({\theta}_{{\rm b}}\) and \({\theta}_{{\rm t}}\) values. a Perfect wetting (no contact line unpinning). b The three sequential regimes, first unpinning on bottom pad. c Absence of second regime for \({\theta}_{{\rm b}} = {\theta}_{{\rm t}}\) (\(u_1=u_2=u_d,\,F_1(u_d)=F_2(u_d)=F_3(u_d)\)). d The three sequential regimes, first unpinning on top pad

Fig. 15
figure15

Transitions to overflow regimes: a from \(R_1\) to \(R_2^{{\rm of}}\), b from \(R_2\) to \(R_3^{{\rm of}}\)

Finally, by considering meniscus confinement within the pads by chemical contrast (Fig. 2b) rather than by topographical step, the formal derivation shown above can be adapted to account for the case of liquid bridge overflow (Lienemann et al. 2004). Overflow is here supposed to take place beyond the edge of the bottom pad onto an adjacent and less wettable surface (see Fig. 15). The case of overflow beyond the top pad is energetically equivalent. We assume that the two (pad and adjacent) surfaces are at the same level and that the energetic barrier to overflow is only chemical in nature. For the less wettable surface, the validity of a specific Young–Dupré equation is also assumed, yielding a contact angle \({\theta}_{{\rm b}}^{{\rm of}}>\pi /2>{\theta}_{{\rm b}}\). The overflow happens when the edge angle of the meniscus reaches the advancing value of the contact angle on the adjacent surface (hereby again assumed to coincide with its static value \({\theta}_{{\rm b}}^{{\rm of}}\)), prompting the unpinning of the contact line toward the adjacent surface. Unpinning takes place for \(u \ge u_{{\rm of}}\) and signals the transition to a regime akin to either the mixed (\(R_2^{{\rm of}}\)) or the full sliding one (\(R_3^{{\rm of}}\)). \(u_{{\rm of}}\) can be either larger or smaller than \(u_1\), yet not larger than \(u_2\) because in \(R_3\) the inclinations of both perpendicular sides of the meniscus remain constant. For the former case of \(0<u_{{\rm of}}<u_1\) (Fig. 15a):

$$R_2^{{\rm of}} \left\{ \begin{array}{ll}\begin{aligned} F_2^{{\rm of}}(u) &= -\frac{\partial E_2^{{\rm of}}(u)}{\partial u} = -\gamma L \left(\frac{u}{\sqrt{h^2+u^2}} - \cos {\theta}_{{\rm b}}^{{\rm of}}\right) \\ k_2^{{\rm of}}(u) &= -\frac{\partial F_2^{{\rm of}}(u)}{\partial u} = \frac{\partial ^2 E_2^{{\rm of}}(u)}{\partial u^2} \\ & = \gamma L \left(\frac{1}{\sqrt{h^2+u^2}}-\frac{u^2}{(h^2+u^2)^{\frac{3}{2}}}\right) \\ &= \frac{k_1(u)}{2}\end{aligned} \end{array}\right.$$
(16)

For the latter case of \(u_1<u_{{\rm of}}\) (Fig. 15b):

$$R_3^{{\rm of}} \left\{ \begin{array}{ll}\begin{aligned} F_3^{{\rm of}}(u) &= -\frac{\partial E_2^{{\rm of}}(u)}{\partial u} = -\gamma L (\cos {\theta}_{{\rm b}} - \cos {\theta}_{{\rm b}}^{{\rm of}}) \\ k_3^{{\rm of}}(u) &= -\frac{\partial F_3^{{\rm of}}(u)}{\partial u} = \frac{\partial ^2 E_3^{{\rm of}}(u)}{\partial u^2} \\ &= 0 \end{aligned}\end{array}\right.$$
(17)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mastrangeli, M., Arutinov, G., Smits, E.C.P. et al. Modeling capillary forces for large displacements. Microfluid Nanofluid 18, 695–708 (2015). https://doi.org/10.1007/s10404-014-1469-9

Download citation

Keywords

  • Contact Angle
  • Contact Line
  • Capillary Force
  • Liquid Bridge
  • Contact Angle Hysteresis