Skip to main content
Log in

A self-converging atomized mist spray device using surface acoustic wave

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

We developed a surface acoustic wave (SAW) atomizer, which can produce a narrow mist spray of submillimeter width. The atomized mist spray converges spontaneously and thus requires no additional spray converging system. Key features in achieving the self-converging atomization are two-port interdigital transducers (IDTs) with a groove in between. The SAW is driven by applying an electric field on IDTs patterned on a piezoelectric substrate. The two-port IDTs drive SAWs in opposite directions toward the groove, which then separates the SAW-driven streaming on each side of the groove. Two types of self-converging atomizer were experimentally demonstrated, a line and a point atomizer. While the former uses parallel IDTs to atomize water from the groove into a thin-planar-shaped spray, the latter uses arc-shaped SAW lenses to focus the SAW into a certain point in the groove to atomize water into a narrow point spray. In addition, by adding a water reservoir, continuous operation of up to 30 s was achieved with the submillimeter narrow point atomizer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Alvarez M, Friend J, Yeo LY (2008) Rapid generation of protein aerosols and nanoparticles via surface acoustic wave atomization. Nanotechnology 19, Article No 455103

  • Anderson JL (1989) Colloid transport by interfacial forces. Annu Rev Fluid Mech 21(1):61–99

    Article  Google Scholar 

  • Asai A, Hara T, Endo I (1987) One-dimensional model of bubble growth and liquid flow in bubble jet printers. Jpn J Appl Phys 26(10):1794–1801

    Article  Google Scholar 

  • Auroux PA, Iossifidis D, Reyes DR, Manz A (2002) Micro total analysis systems. 2. Analytical standard operations and applications. Anal Chem 74(12):2637–2652

    Article  Google Scholar 

  • Bassous E, Taub HH, Kuhn L (1977) Ink jet printing nozzle arrays etched in silicon. Appl Phys Lett 31(2):135

    Article  Google Scholar 

  • Bertoni HL, Tamir T (1973) Unified theory of Rayleigh-angle phenomena for acoustic beams at liquid-solid interfaces. Appl Phys 2(4):157–172

    Article  Google Scholar 

  • Chono K, Shimizu N, Matsui Y, Kondoh J, Shiokawa S (2004) Development of novel atomization system based on SAW streaming. Jpn J Appl Phys 43(5B):2987–2991

    Article  Google Scholar 

  • Frommelt T, Kostur M, Wenzel-Schäfer M, Talkner P, Hänggi P, Wixforth A (2008) Microfluidic mixing via acoustically driven chaotic advection. Phys Rev Lett 100(3):1–4

    Article  Google Scholar 

  • Gaskell S (1997) Electrospray: principles and practice. J Mass Spectrom 32(April):677–688

    Article  Google Scholar 

  • Grace J, Marijnissen J (1994) A review of liquid atomization by electrical means. J Aerosol Sci 25(6):1005–1019

    Article  Google Scholar 

  • Guttenberg Z, Rathgeber a, Keller S, Rädler J, Wixforth a, Kostur M, Schindler M, Talkner P (2004) Flow profiling of a surface-acoustic-wave nanopump. Phys Rev E 70(5):1–10

    Article  Google Scholar 

  • Issaq H (2002) A decade of capillary electrophoresis. Electrophoresis (Weinheim, Fed Repub Ger) 21:1921–1939

    Article  Google Scholar 

  • de Jonge LT, Ju J, Leeuwenburgh S, Yamagata Y, Higuchi T, Wolke J, Inoue K, Jansen J (2010) A comparative study of two advanced spraying techniques for the deposition of biologically active enzyme coatings onto bone-substituting implants. Thin Solid Films 518(19):5615–5621

    Article  Google Scholar 

  • Kharusi M, Farnell G (1972) On diffraction and focusing in anisotropic crystals. Proc IEEE 60(8):945–956

    Article  Google Scholar 

  • Kim JW, Yamagata Y, Takasaki M, Lee BH, Ohmori H, Higuchi T (2005) A device for fabricating protein chips by using a surface acoustic wave atomizer and electrostatic deposition. Sens Actuators B 107:535–545

    Article  Google Scholar 

  • Kondoh J, Shimizu N, Matsui Y, Shiokawa S (2005) Liquid heating effects by SAW streaming on the piezoelectric substrate. IEEE Trans Ultrason Ferroelectr Freq Control 52(10):1881–1883

    Article  Google Scholar 

  • Kurosawa M, Watanabe T, Futami A, Higuchi T (1995) Surface acoustic wave atomizer. Sens Actuators A 50:69–74

    Article  Google Scholar 

  • Lang R (1962) Ultrasonic atomization of liquids. J Acoust Soc Am 341(1954):6–8

    Article  Google Scholar 

  • Lintel HV, de Pol FV, Bouwstra S (1988) A piezoelectric micropump based on micromachining of silicon. Sens Actuators 15:153–167

    Article  Google Scholar 

  • Murochi N, Sugimoto M, Matsui Y, Kondoh J (2007) Deposition of thin film using a surface acoustic wave device. Jpn J Appl Phys 46(7B):4754–4759

    Article  Google Scholar 

  • Nagase K, Friend J, Ishii T, Nakamura K, Ueha S (2001) A study of new ultrasonic atomizing by two parallel SAW devices. In: 22nd symposium on ultrasonic electronics, pp 377–378

  • Nakagawa Y (1973) Third-order elastic constants of lithium niobate. J Appl Phys 44(9):3969

    Article  Google Scholar 

  • Pohl HA (1978) Dielectrophoresis: the behavior of neutral matter in nonuniform electric fields. Cambridge University Press, Cambridge

    Google Scholar 

  • Qi A, Yeo LY, Friend JR (2008) Interfacial destabilization and atomization driven by surface acoustic waves. Phys Fluids 20(7):074103

    Article  Google Scholar 

  • Qi A, Friend J, Yeo L (2009) Investigation of SAW atomization. In: IEEE international ultrasonics symposium, IEEE, 1, pp 787–790

  • Quilliet C, Berge B (2001) Electrowetting: a recent outbreak. Curr Opin Colloid Interface Sci 6(1):34–39

    Article  Google Scholar 

  • Reitz RD, Bracco FV (1982) Mechanism of atomization of a liquid jet. Phys Fluids 25(10):1730

    Article  MATH  Google Scholar 

  • Reyes DR, Iossifidis D, Auroux PA, Manz A (2002) Micro total analysis systems. 1. Introduction, theory, and technology. Anal Chem 74(12):2623–2636

    Article  Google Scholar 

  • Sano T, Onuki T, Hamate Y, Hojo M, Nagasawa S, Kuwano H (2009) Micro blender and separator using inner-vortex of droplet induced by surface acoustic wave. In: International conference on solid-state sensors, actuators and microsystems, pp 370–373

  • Shimizu Y (1993) Current status of piezoelectric substrate and propagation characteristics for SAW devices. Jpn J Appl Phys 32(5B):2183–2187

    Article  Google Scholar 

  • Shiokawa S, Matsui Y, Ueda T (1989) Liquid streaming and droplet formation caused by leaky Rayleigh waves. In: Ultrasonic symposium, pp 643–646

  • Shiokawa S, Matsui Y, Ueda T (1990) Study on SAW streaming and its application to fluid devices. Jpn J Appl Phys Suppl 29:137–139

    Article  Google Scholar 

  • Sritharan K, Strobl CJ, Schneider MF, Wixforth a, Guttenberg Z (2006) Acoustic mixing at low Reynolds numbers. Appl Phys Lett 88(5):054102

    Article  Google Scholar 

  • Terry S, Jerman J, Angell J (1979) A gas chromatographic air analyzer fabricated on a silicon wafer. IEEE Trans Electron Devices 26(12):1880–1886

    Article  Google Scholar 

  • White RM, Voltmer FW (1965) Direct piezoelectric coupling to surface elastic waves. Appl Phys Lett 7(12):314

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by KAKENHI, the Creative Scientific Research Program (No. 18GS0203: Study on nano-energy system creation).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuichiro Hamate.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yabe, A., Hamate, Y., Hara, M. et al. A self-converging atomized mist spray device using surface acoustic wave. Microfluid Nanofluid 17, 701–710 (2014). https://doi.org/10.1007/s10404-014-1358-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-014-1358-2

Keywords

Navigation