Skip to main content

Advertisement

Log in

The stiffness parameter β assessed by an ultrasonic phase-locked echo-tracking system is associated with plaque formation in the common carotid artery

  • Original Article
  • Published:
Journal of Medical Ultrasonics Aims and scope Submit manuscript

Abstract

Purpose

Assessment of plaque formation in the common carotid artery (CCA) is important for stratification of the risk of subsequent stroke. The stiffness parameter β, which can be assessed using an ultrasonic phase-locked echo-tracking system, was developed to evaluate arterial stiffness. The purpose this study was to examine the relationship of the stiffness parameter β to intima–media thickness (IMT) and plaque formation.

Methods

The stiffness parameter β and mean IMT were measured using an ultrasonic phase-locked echo-tracking system and an automatic IMT measurement system, respectively, and the presence of plaque was assessed by ultrasonography in 347 subjects who took part in a health check-up program for community-dwelling people in Hokkaido.

Results

Values of the stiffness parameter β were significantly higher in subjects with plaque formation than in those without plaque (10.60 ± 0.45 vs. 8.88 ± 0.23, P < 0.005) in whom IMT was not thickened; however, it was not different in subjects with increased IMT (>1.0 mm). The percentage of plaque formation was significantly correlated with the value of the stiffness parameter β. Furthermore, the stiffness parameter β was significantly correlated with plaque formation after adjustment for several clinical variables (odds ratio 1.113–1.178, P < 0.001).

Conclusion

The stiffness parameter β is associated with plaque formation in the CCA, especially in subjects with a normal IMT. This could potentially be used as a predictor for plaque formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Blankenhorn DH, Kramsch DM. Reversal of atherosis and sclerosis. The two components of atherosclerosis. Circulation. 1989;79:1–7.

    Article  PubMed  CAS  Google Scholar 

  2. Ebrahim S, Papacosta O, Whincup P, et al. Carotid plaque, intima media thickness, cardiovascular risk factors, and prevalent cardiovascular disease in men and women: the British Regional Heart Study. Stroke. 1999;30:841–50.

    Article  PubMed  CAS  Google Scholar 

  3. Suurkula M, Agewall S, Fagerberg B, et al. Ultrasound evaluation of atherosclerotic manifestations in the carotid artery in high-risk hypertensive patients. Risk Intervention Study (RIS) Group. Arterioscler Thromb. 1994;14:1297–304.

    Article  PubMed  CAS  Google Scholar 

  4. Aminbakhsh A, Mancini GB. Carotid intima–media thickness measurements: what defines an abnormality? A systematic review. Clin Invest Med. 1999;22:149–57.

    PubMed  CAS  Google Scholar 

  5. Sierra C, Coca A, Schiffrin EL. Vascular mechanisms in the pathogenesis of stroke. Curr Hypertens Rep. 2011;13:200–7.

    Article  PubMed  CAS  Google Scholar 

  6. Goldstein LB, Adams R, Alberts MJ, et al. Primary prevention of ischemic stroke: a guideline from the American Heart Association/American Stroke Association Stroke Council: cosponsored by the Atherosclerotic Peripheral Vascular Disease Interdisciplinary Working Group; Cardiovascular Nursing Council; Clinical Cardiology Council; Nutrition, Physical Activity, and Metabolism Council; and the Quality of Care and Outcomes Research Interdisciplinary Working Group: the American Academy of Neurology affirms the value of this guideline. Stroke. 2006;37:1583–633.

    PubMed  Google Scholar 

  7. Salonen R, Salonen JT. Determinants of carotid intima–media thickness: a population-based ultrasonography study in eastern Finnish men. J Intern Med. 1991;229:225–31.

    Article  PubMed  CAS  Google Scholar 

  8. Pignoli P, Tremoli E, Poli A, et al. Intimal plus medial thickness of the arterial wall: a direct measurement with ultrasound imaging. Circulation. 1986;74:1399–406.

    Article  PubMed  CAS  Google Scholar 

  9. Salonen R, Seppanen K, Rauramaa R, et al. Prevalence of carotid atherosclerosis and serum cholesterol levels in eastern Finland. Arteriosclerosis. 1988;8:788–92.

    Article  PubMed  CAS  Google Scholar 

  10. Mattace-Raso FU, van der Cammen TJ, Hofman A, et al. Arterial stiffness and risk of coronary heart disease and stroke: the Rotterdam Study. Circulation. 2006;113:657–63.

    Article  PubMed  Google Scholar 

  11. Asmar R, Topouchian J, Pannier B, et al. Pulse wave velocity as endpoint in large-scale intervention trial. The Complior study. Scientific, Quality Control, Coordination and Investigation Committees of the Complior Study. J Hypertens. 2001;19:813–8.

    Article  PubMed  CAS  Google Scholar 

  12. Kubo T, Miyata M, Minagoe S, et al. A simple oscillometric technique for determining new indices of arterial distensibility. Hypertens Res. 2002;25:351–8.

    Article  PubMed  Google Scholar 

  13. Yamashina A, Tomiyama H, Takeda K, et al. Validity, reproducibility, and clinical significance of noninvasive brachial-ankle pulse wave velocity measurement. Hypertens Res. 2002;25:359–64.

    Article  PubMed  Google Scholar 

  14. Munakata M, Sakuraba J, Tayama J, et al. Higher brachial-ankle pulse wave velocity is associated with more advanced carotid atherosclerosis in end-stage renal disease. Hypertens Res. 2005;28:9–14.

    Article  PubMed  Google Scholar 

  15. Matsui Y, Kario K, Ishikawa J, et al. Reproducibility of arterial stiffness indices (pulse wave velocity and augmentation index) simultaneously assessed by automated pulse wave analysis and their associated risk factors in essential hypertensive patients. Hypertens Res. 2004;27:851–7.

    Article  PubMed  Google Scholar 

  16. Niki K, Sugawara M, Chang D, et al. A new noninvasive measurement system for wave intensity: evaluation of carotid arterial wave intensity and reproducibility. Heart Vessels. 2002;17:12–21.

    Article  PubMed  Google Scholar 

  17. Kizu A, Koyama H, Tanaka S, et al. Arterial wall stiffness is associated with peripheral circulation in patients with type 2 diabetes. Atherosclerosis. 2003;170:87–91.

    Article  PubMed  CAS  Google Scholar 

  18. Lee E, Emoto M, Teramura M, et al. The combination of IMT and stiffness parameter beta is highly associated with concurrent coronary artery disease in type 2 diabetes. J Atheroscler Thromb. 2009;16:33–9.

    Article  PubMed  Google Scholar 

  19. Taniwaki H, Shoji T, Emoto M, et al. Femoral artery wall thickness and stiffness in evaluation of peripheral vascular disease in type 2 diabetes mellitus. Atherosclerosis. 2001;158:207–14.

    Article  PubMed  CAS  Google Scholar 

  20. Leskinen Y, Lehtimaki T, Loimaala A, et al. Carotid atherosclerosis in chronic renal failure-the central role of increased plaque burden. Atherosclerosis. 2003;171:295–302.

    Article  PubMed  CAS  Google Scholar 

  21. Ogawa T, Shimada M, Ishida H, et al. Relation of stiffness parameter beta to carotid arteriosclerosis and silent cerebral infarction in patients on chronic hemodialysis. Int Urol Nephrol. 2009;41:739–45.

    Article  PubMed  CAS  Google Scholar 

  22. Emoto M, Nishizawa Y, Kawagishi T, et al. Stiffness indexes beta of the common carotid and femoral arteries are associated with insulin resistance in NIDDM. Diabetes Care. 1998;21:1178–82.

    Article  PubMed  CAS  Google Scholar 

  23. Koyama H, Maeno T, Fukumoto S, et al. Platelet P-selectin expression is associated with atherosclerotic wall thickness in carotid artery in humans. Circulation. 2003;108:524–9.

    Article  PubMed  CAS  Google Scholar 

  24. Antonini-Canterin F, Rosca M, Beladan CC, et al. Echo-tracking assessment of carotid artery stiffness in patients with aortic valve stenosis. Echocardiography. 2009;26:823–31.

    Article  PubMed  Google Scholar 

  25. Benthin M, Dahl P, Ruzicka R, Lindstrom K. Calculation of pulse-wave velocity using cross correlation—effects of reflexes in the arterial tree. Ultrasound Med Biol. 1991;17:461–9.

    Article  PubMed  CAS  Google Scholar 

  26. Veller MG, Fisher CM, Nicolaides AN, et al. Measurement of the ultrasonic intima–media complex thickness in normal subjects. J Vasc Surg. 1993;17:719–25.

    Article  PubMed  CAS  Google Scholar 

  27. Bonithon-Kopp C, Touboul PJ, Berr C, et al. Relation of intima–media thickness to atherosclerotic plaques in carotid arteries. The Vascular Aging (EVA) Study. Arterioscler Thromb Vasc Biol. 1996;16:310–6.

    Article  PubMed  CAS  Google Scholar 

  28. Espeland MA, Hoen H, Byington R, et al. Spatial distribution of carotid intimal–medial thickness as measured by B-mode ultrasonography. Stroke. 1994;25:1812–9.

    Article  PubMed  CAS  Google Scholar 

  29. Persson J, Formgren J, Israelsson B, et al. Ultrasound-determined intima–media thickness and atherosclerosis. Direct and indirect validation. Arterioscler Thromb. 1994;14:261–4.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Aloka Co., Ltd. (Tokyo, Japan) for providing ultrasonography for this study, and we also thank all the participants and staff of the health examination program for residents of Yakumo Town, Hokkaido, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naohiro Ichino.

About this article

Cite this article

Ichino, N., Osakabe, K., Sugimoto, K. et al. The stiffness parameter β assessed by an ultrasonic phase-locked echo-tracking system is associated with plaque formation in the common carotid artery. J Med Ultrasonics 39, 3–9 (2012). https://doi.org/10.1007/s10396-011-0323-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10396-011-0323-x

Keywords

Navigation