, Volume 15, Issue 4, pp 804–814 | Cite as

Long-Term Study of a Hantavirus Reservoir Population in an Urban Protected Area, Argentina

  • Emiliano MuschettoEmail author
  • Gerardo Rubén Cueto
  • Regino Cavia
  • Paula Julieta Padula
  • Olga Virginia Suárez
Original Contribution


Green spaces in urban areas can play a key role in protecting wildlife. However, the presence of wildlife in urban areas can lead to human health risks. Although the presence of the rodent species Oligoryzomys flavescens (hantavirus reservoir) has been recorded in cities of Argentina, its population dynamics in this type of habitat is still unknown. Here, we evaluated: (1) long-term spatial and temporal patterns of O. flavescens abundance and how these patterns were influenced by weather factors and (2) the seroprevalence of hantavirus and the identity of the viral lineage circulating in the population that inhabits the Costanera Sur Ecological Reserve, a protected area in the city of Buenos Aires. Genetic results confirmed that the pathogenic ANDES Central Lechiguanas virus is present in O. flavescens populations inhabiting this urban reserve. Abundance of O. flavescens showed interannual and seasonal fluctuations, with maximum values in winter and spring and minimum ones in summer and autumn. Summers with the highest abundances of O. flavescens were preceded by warmer winters, while winters with lower abundances were preceded by warmer summers. On the other hand, accumulated precipitations in the previous 6 months positively affected winter abundance. These results could help the authorities in charge of the green spaces of Buenos Aires to identify priority areas and times of the year for the implementation of preventive measures that minimize the contact of rodents with visitors. Such measures could be intensified when winters are warmer than normal, and summers are cooler and wetter than normal.


Rodents Seroprevalence Population dynamics Urban ecosystem Meteorological variables Control measures GAM models 



We are grateful to the team of Laboratorio de Ecología de Poblaciones (Facultad de Ciencias Exactas y Naturales-UBA) for their assistance during the field sampling and to the staff at Reserva Ecológica Costanera Sur for logistic support. This research was supported with grants from Universidad de Buenos Aires and Gobierno de la Ciudad de Buenos Aires, Argentina.


  1. Abbott KD, Ksiazek TG, Mills JN (1999) Long-term hantavirus persistence in rodent populations in central Arizona. Emerging Infectious Diseases 5:102–112.CrossRefGoogle Scholar
  2. Andreo V, Provensal C, Scavuzzo M, Lamfri M, Polop J (2009) Environmental factors and population fluctuations of Akodon azarae (Muridae: Sigmodontinae) in central Argentina. Austral Ecology 34:132–142.CrossRefGoogle Scholar
  3. Bates DM (2010) lme4: Mixed-effects modeling with R. Last Accessed August 2016.
  4. Begon M (2003) Disease: health effects on humans, population effects on rodents. In: Rats, mice and people: rodent biology and management, Grant R, Singleton LA, Hinds C, Krebs J, Spratt DM (editors), Camberra: Australian Center for International Agricultural Research, Monograph No. 96, pp 13–19.Google Scholar
  5. Bolund P, Hunhammar S (1999) Ecosystem services in urban areas. Ecological Economics 29:293–301.CrossRefGoogle Scholar
  6. Bonaventura SM, Pancotto V, Madanes N, Vicari R (2003) Microhabitat use and density of sigmodontine rodents in Spartina densiflora freshwater marshes, Argentina. Mammalia 67:367–378.CrossRefGoogle Scholar
  7. Busch M, Kravetz FO (1992) Competitive interactions among rodents (Akodon azarae, Calomys laucha, C. musculinus and O. flavescens) in a two-habitat system. I. Spatial and numerical relationships. Mammalia 56:45–56.Google Scholar
  8. Calisher CH, Mills JN, Sweeney WP et al (2005) Population dynamics of a diverse rodent assemblage in mixed grass-shrub habitat, Southeastern Colorado, 1995-2000. Journal of Wildlife Diseases 41:12–28.CrossRefGoogle Scholar
  9. Cavia R, Cueto GR, Suárez OV (2009) Changes in rodent communities according to the landscape structure in an urban ecosystem. Landscape and Urban Planning 90:11–19.CrossRefGoogle Scholar
  10. Cavia R, Muschetto E, Cueto GR, Suárez OV (2015) Commensal rodents in the city of Buenos Aires: A temporal, spatial, and environmental analysis at the whole city level. EcoHealth 12:468–479.CrossRefGoogle Scholar
  11. Chernousova N (2013) Role of wildlife small rodents of the city parks and park-forests in helminth epizootology by the example of Apodemus Uralensis Pallas, 1811. Beiträge zur Jagd-und Wildforschung 38:341–347.Google Scholar
  12. Chiappero MB, Caldero GE, Gardenal CN (1997) O. flavescens (Rodentia, Muridae): Gene flow among populations from central-eastern Argentina. Genetica 101:105–113.CrossRefGoogle Scholar
  13. Crespo JA (1966) Ecología de una comunidad de roedores silvestres en el Partido de Rojas, Provincia de Buenos Aires. Revista del Museo Argentino de Ciencias Naturales 1:73–134.Google Scholar
  14. Cueto GR, Cavia R, Bellomo C, Padula PJ, Suárez OV (2008) Prevalence of hantavirus infection in wild Rattus norvegicus and R. rattus populations of Buenos Aires City, Argentina. Tropical Medicine and International Health 13:46–51.CrossRefGoogle Scholar
  15. Di Rienzo JA, Guzmán AW, Casanoves F (2002) A multiple comparisons method based on the distribution of the root node distance of a binary tree. Journal of Agricultural, Biological, and Environmental Statistics 7:129–142.CrossRefGoogle Scholar
  16. Dizney L, Philip DJ, Ruedas LA (2010) Natural history of Sin Nombre virus infection in deer mice in urban parks in Oregon, Journal of Wildlife Diseases 46:433–441.CrossRefGoogle Scholar
  17. Douglass RJ, Calisher CH, Wagoner KD, Mills JN (2007) Sin Nombre virus infection of deer mice in Montana: characteristics of newly infected mice, incidence, and temporal pattern of infection. Journal of Wildlife Diseases 43:12–22.CrossRefGoogle Scholar
  18. Douglass RJ, Wilson T, Semmens WJ, Zanto SN, Bond CW, Van Horn RC, Mills JN (2001) Longitudinal studies of Sin Nombre virus in deer mouse-dominated ecosystems of Montana. The American Journal of Tropical Medicine and Hygiene 65:33–41.CrossRefGoogle Scholar
  19. Ernest SKM, Brown JH, Parmenter RR (2000) Rodents, plants, and precipitation: spatial and temporal dynamics of consumers and resources. Oikos 88: 470–482.CrossRefGoogle Scholar
  20. Fewster RM, Buckland ST, Siriwardena GM, Baillie SR, Wilson JD (2000) Analysis of population trends for farmland birds using generalized additive models. Ecology 81:1970–1984.CrossRefGoogle Scholar
  21. Froeschke G, Matthee S (2014) Landscape characteristics influence helminth infestations in a peri-domestic rodent-implications for possible zoonotic disease. Parasite Vector 7:393.CrossRefGoogle Scholar
  22. Garsd A, Howard WE (1981) A 19-year study of microtine population fluctuations using time-series analysis. Ecology 62:930–937.CrossRefGoogle Scholar
  23. Garsd A, Howard WE (1982) Microtine population fluctuations: an ecosystem approach based on time-series analysis. Journal of Animal Ecology 51:225–234.CrossRefGoogle Scholar
  24. Giannoni SM, Mera Sierra R, Brengio S, Jiménez Baigorria L (2003) Guía para el uso de animales en investigaciones de campo y en cautiverio, Comisión de Ética de la Sociedad Argentina para el Estudio de los Mamíferos. Last Accessed March 2015.
  25. Glass GE, Livingstone W, Mills JN, Hlady WG, Fine JB, Biggler W, Coke T, Frazier D, Atherley S, Rollin PE, Ksiazek TG, Peters CJ, Childs JE (1998) Black Creek Canal virus infection in Sigmodon hispidus in southern Florida. The American Journal of Tropical Medicine and Hygiene 59:699–703.CrossRefGoogle Scholar
  26. Gómez MD, Provenzal MC, Polop JJ (2008) Effects of interespecific competition on Mus musculus in an urban area. Journal of Pest Science 81:235–240.CrossRefGoogle Scholar
  27. Gómez Villafañe IE, Expósito Y, San Martín Á, Picca P, Busch M (2012) Rodent diversity and habitat use in a protected area of Buenos Aires province, Argentina. Revista Mexicana de Biodiversidad 83:762–771.CrossRefGoogle Scholar
  28. Hancke D, Navone G, Suárez O (2011) Endoparasite community of Rattus norvegicus captured in a shantytown of Buenos Aires City, Argentina. Helminthologia 48:167–173.CrossRefGoogle Scholar
  29. Holmgren M, Stapp P, Dickman CR et al (2006) Extreme climatic events shape arid and semiarid ecosystems. Frontiers in Ecology and the Environment 4:87–95.CrossRefGoogle Scholar
  30. Himsworth CG, Parsons KL, Jardine C, Patrick DM (2013) Rats, cities, people, and pathogens: a systematic review and narrative synthesis of literature regarding the ecology of rat-associated zoonoses in urban centers. Vector-Borne and Zoonotic Diseases 13:349–359.CrossRefGoogle Scholar
  31. Madsen T, Ujvari B, Shine R, Olsson M (2006) Rain, rats and pythons: Climate-driven population dynamics of predators and prey in tropical Australia. Austral Ecology 31:30–37.CrossRefGoogle Scholar
  32. Mahan CG, O’Connell TJ (2005) Small mammal use of suburban and urban parks in central Pennsylvania. Northeastern Naturalist 12:307–314.CrossRefGoogle Scholar
  33. Marcomini SC, López RA (2004) Generación de nuevos ecosistemas litorales por albardones de relleno en la costa de la ciudad de Buenos Aires. Revista de la Asociación Geológica Argentina 59:261–272.Google Scholar
  34. Maroli M, Vadell MV, Iglesias A, Padula PJ, Gómez Villafañe IE (2015) Daily movements and microhabitat selection of hantavirus reservoirs and other sigmodontinae rodent species that inhabit a protected natural area of Argentina. Ecohealth 12(3):421–431.CrossRefGoogle Scholar
  35. Maroli M, Vadell MV, Padula PJ, Gómez Villafañe IE (2018) Rodent abundance and hantavirus infection in protect area, east-central Argentina. Emerging infectious diseases 24:131–134.CrossRefGoogle Scholar
  36. Martínez VP, Bellomo CM, Cacace ML, Suárez P, Bogni L, Padula PJ (2010). Hantavirus pulmonary syndrome in Argentina, 1995–2008. Emerging infectious diseases, 16:1853–1859.CrossRefGoogle Scholar
  37. Massoia E, Fornes A (1965) Nuevos datos sistemáticos, biológicos y etoecológicos de Oryzomys (Oligoryzomys) delticola Thomas (Rodentia-Cricetidae). Delta del Paraná, Investigaciones Agrícolas 4.Google Scholar
  38. Matuschka FR, Endepols S, Richter D, Ohlenbusch A, Eiffert H, Spielman A (1996) Risk of urban lyme disease enhanced by the presence of rats. Journal of Infectious Diseases 174:1108–1111.CrossRefGoogle Scholar
  39. Meerburg BG, Singleton GR, Kijlstra A (2009) Rodent-borne diseases and their risks for public health. Critical Reviews in Microbiology 35:221–270.CrossRefGoogle Scholar
  40. Meserve PL, Kelt DA, Milstead WB, Gutiérrez JR (2003) Thirteen years of shifting top-down and bottom-up control. BioScience 53:633–646.CrossRefGoogle Scholar
  41. Mills JN, Ellis BA, Mckee KT, Maiztegui JI, Childs JE (1991) Habitat associations and relative densities of rodent populations in cultivated areas of central Argentina. Journal of Mammalogy 72:470–479.CrossRefGoogle Scholar
  42. Mills JN, Schmidt K, Ellis BA, Caldero´n G, Enrı ´a DA, Ksiazek TG (2007) A longitudinal study of hantavirus infection in three sympatric reservoir species in agroecosystems on the Argentine pampa. Vector-Borne and Zoonotic Diseases 7:229–240.CrossRefGoogle Scholar
  43. Nichol ST, Spiropoulou CF, Morzunov S, Rollin PE, Ksiazek GT, Feldmann H, Sanchez A, Childs J, Zaki S, Peters CJ (1993) Genetic identification of a hantavirus associated with an outbreak of acute respiratory illness. Science 262:914–917.CrossRefGoogle Scholar
  44. Nielsen AB, van den Bosch M, Maruthaveeran S, van den Bosch CK (2014) Species richness in urban parks and its drivers: A review of empirical evidence. Urban Ecosystems 17:305–327.CrossRefGoogle Scholar
  45. Padula PJ, Colavecchia SB, Martínez VP, Della Valle MG, Edelstein A, Miguel SDL, Russi J, Riquelme JM, Colucci N, Almirón M, Rabinovich RD (2000a) Genetic diversity, distribution, and serological features of hantavirus infection in five countries in South America. Journal of Clinical Microbiology 38:3029–3035.PubMedPubMedCentralGoogle Scholar
  46. Padula PJ, Figueroa R, Navarrete M, Pizarro E, Cadiz R, Bellomo C, Jofre C, Zaror L, Rodriguez E, Murúa R (2004) Transmission study of andes hantavirus infection in wild Sigmodontinae rodents. Journal of Virology 78:11972–11979.CrossRefGoogle Scholar
  47. Padula PJ, Rossi CM, Della Valle MO, Martinez PV, Colavecchia SB, Edelstein A, Miguel SDL, Rabinovich RD, Segura EL (2000b) Development and evaluation of a solid-phase enzyme immunoassay based on Andes hantavirus recombinant nucleoprotein. Journal of medical microbiology 49:149–155.CrossRefGoogle Scholar
  48. R Development Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. Last Accessed June 2016.
  49. Riley SPD, Hadidian J, Manski DA (1998) Population density, survival, and rabies in raccoons in an urban national park. Canadian Journal of Zoology 76:1153–1164.CrossRefGoogle Scholar
  50. Seber GAF (1973) The estimation of animal abundance and related parameters. Charles Griffin & Company Limited, London.Google Scholar
  51. Shanahan DF, Lin BB, Gaston KJ, Bush R, Fuller RA (2015) What is the role of trees and remnant vegetation in attracting people to urban parks? Landscape Ecology 30:153–165.CrossRefGoogle Scholar
  52. Singleton GR, Leirs H, Hinds LA, Zhang Z (1999) Ecologically-based management of rodent pests–Re-evaluating our approach to an old problem. In: Ecologically-based Management of Rodent Pests, Singleton GR, Hinds LA, Leirs H, Zhang Z (editors). Camberra: Australian Centre for International Agricultural Research, pp 17–29.Google Scholar
  53. Singleton G, Krebs CJ, Davis S, Chambers L, Brown P (2001) Reproductive changes in fluctuating house mouse populations in southeastern Australia. Proceedings of the Royal Society of London B: Biological Sciences 268:1741–1748.CrossRefGoogle Scholar
  54. Stenseth NC, Leirs H, Skonhoft A et al (2003) Mice and rats: the dynamics and bioeconomics of agricultural rodents pests. Frontiers in Ecology and the Environment 1:367–375.CrossRefGoogle Scholar
  55. Suárez OV, Bonaventura SM (2001) Habitat use and diet in sympatric species of rodents of the low Paraná delta, Argentina. Mammalia 65:167–176.CrossRefGoogle Scholar
  56. Suárez OV, Cueto GR, Cavia R, Gómez Villafañe IE, Bilenca DN, Edelstein A, Martínez P, Miguel S, Bellomo C, Hodara K, Padula PJ, Busch M (2003). Prevalence of infection with hantavirus in rodent populations of central Argentina. Memórias do Instituto Oswaldo Cruz 98:727–732.CrossRefGoogle Scholar
  57. Teta P, Cueto G, Suárez O (2007) New data on morphology and natural history of Deltamys kempi Thomas, 1919 (Cricetidae, Sigmodontinae) from central-eastern Argentina. Zootaxa 1665:43–51.Google Scholar
  58. Udrizar Sauthier WO, Abba AM, Udrizar Sauthier DE (2010) Nidos de Oligoryzomys sp. y Holochilus brasiliensis (Rodentia, Cricetidae) en el este de la provincia de Entre Ríos, Argentina. Mastozoología Neotropical 17:207–211.Google Scholar
  59. Vadell M, Bellomo C, San Martín A, Padula PJ, Gómez Villafañe IE (2011) Hantavirus ecology in rodent populations in three protected areas of Argentina. Tropical Medicine & International Health 16:1342–1352.CrossRefGoogle Scholar
  60. Vadell MV, Erize FG, Gómez Villafañe IE (2016) Evaluation of habitat requirements of small rodents and effectiveness of an ecologically-based management in a hantavirus-endemic natural protected area in Argentina. Integrative Zoology 12:77–94.CrossRefGoogle Scholar
  61. Vadell MV, Gómez Villafañe IE (2016) Environmental variables associated with hantavirus reservoirs and other small rodent species in two national parks in the Paraná delta, Argentina: implications for disease prevention. EcoHealth 13:248–260.CrossRefGoogle Scholar
  62. Vadell MV, Gómez Villafañe IE, Cavia R (2014) Are life-history strategies of Norway rats (Rattus norvegicus) and house mice (Mus musculus) dependent on environmental characteristics? Wildlife Research 41:172–184.CrossRefGoogle Scholar
  63. Wood SN (2011) Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 73:3–36.CrossRefGoogle Scholar
  64. Zhou D, Chu LM (2012) How would size, age, human disturbance, and vegetation structure affect bird communities of urban parks in different seasons? Journal of Ornithology153:1101–1112.CrossRefGoogle Scholar
  65. Zuleta GA, Kravetz FO, Busch M, Percich RE (1988) Dinámica poblacional del ratón del pastizal pampeano (Akodon azarae) en ecosistemas agrarios de Argentina. Revista Chilena de Historia Natural 61:231–244.Google Scholar
  66. Zuur AF (2009) Mixed Effects Models and Extensions in Ecology with R, New York: Springer.CrossRefGoogle Scholar

Copyright information

© EcoHealth Alliance 2018

Authors and Affiliations

  • Emiliano Muschetto
    • 1
    Email author
  • Gerardo Rubén Cueto
    • 1
  • Regino Cavia
    • 1
  • Paula Julieta Padula
    • 2
  • Olga Virginia Suárez
    • 1
  1. 1.Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Instituto de Ecología, Genética y Evolución de Buenos Aires, (IEGEBA) UBA-CONICETUniversidad de Buenos AiresCiudad Autónoma de Buenos AiresArgentina
  2. 2.CONICETInstituto Nacional de Enfermedades Infecciosas ANLIS “Dr. Carlos G. Malbrán”Buenos AiresArgentina

Personalised recommendations