Skip to main content

Advertisement

Log in

Visual function and inner retinal structure correlations in aquaporin-4 antibody-positive optic neuritis

  • Clinical Investigation
  • Published:
Japanese Journal of Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To investigate the correlation between visual function and thinning of the retinal nerve fiber layer (RNFL) and the macular ganglion cell-inner plexiform layer (GCIPL) as measured by optical coherence tomography (OCT) in eyes with aquaporin-4 IgG-positive optic neuritis (AQP4-IgG-positive ON).

Study design

Prospective study.

Methods

Patients with a history of ON were categorized into 2 groups: the AQP4-IgG-positive group and the AQP4-IgG-negative group. Patients with multiple sclerosis were excluded. All patients underwent ophthalmologic examination and OCT imaging at least 6 months after the last episode of acute ON. Visual function and inner retinal structure correlations were analyzed using Pearson correlation and regression analyses.

Results

Thirty-one previous ON eyes of 17 AQP4-IgG-positive patients and 21 previous ON eyes of 15 AQP4-IgG-negative patients were registered. Visual function, especially the visual field, was better correlated with RNFL than with macular GCIPL. The best correlation between visual function and RNFL was the linear model, whereas the best correlation between visual function and GCIPL was the nonlinear model (inverse regression). Regression models revealed worse visual function in AQP4-IgG-positive ON than in AQP4-IgG-negative ON, whereas no differences in RNFL and GCIPL were found between the 2 groups.

Conclusions

RNFL measured by OCT can be a useful retinal structure for estimating and monitoring visual field loss in AQP4-IgG-positive ON patients, particularly in patients whose visual field cannot be quantitated. The correlation between visual function and the inner retinal structure of eyes with AQP4-IgG is unique and differs from that of eyes without AQP4-IgG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Wingerchuk DM, Banwell B, Bennett JL, Cabre P, Carroll W, Chitnis T, et al. International consensus diagnostic criteria for neuromyelitis optica spectrum disorders. Neurology. 2015;85:177–89.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Evangelou N, Konz D, Esiri MM, Smith S, Palace J, Matthews PM. Size-selective neuronal changes in the anterior optic pathways suggest a differential susceptibility to injury in multiple sclerosis. Brain. 2001;124:1813–20.

    Article  PubMed  CAS  Google Scholar 

  3. Aref AA, Budenz DL. Spectral domain optical coherence tomography in the diagnosis and management of glaucoma. Ophthalmic Surg Lasers Imaging. 2010;41:S15–27.

    Article  PubMed  Google Scholar 

  4. Mwanza JC, Chang RT, Budenz DL, Durbin MK, Gendy MG, Shi W, et al. Reproducibility of peripapillary retinal nerve fiber layer thickness and optic nerve head parameters measured with cirrus HD-OCT in glaucomatous eyes. Investig Ophthalmol Vis Sci. 2010;51:5724–30.

    Article  Google Scholar 

  5. Fukuchi M, Kishi S, Li D, Akiyama H. Acute ganglion cell loss during rapid visual recovery in optic neuritis. Graefes Arch Clin Exp Ophthalmol. 2016;254:2355–60.

    Article  PubMed  Google Scholar 

  6. Saxena R, Bandyopadhyay G, Singh D, Singh S, Sharma P, Menon V. Evaluation of changes in retinal nerve fiber layer thickness and visual functions in cases of optic neuritis and multiple sclerosis. Indian J Ophthalmol. 2013;61:562–6.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lennon VA, Wingerchuk DM, Kryzer TJ, Pittock SJ, Lucchinetti CF, Fujihara K, et al. A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis. Lancet. 2004;364:2106–12.

    Article  PubMed  CAS  Google Scholar 

  8. Hinson SR, Pittock SJ, Lucchinetti CF, Roemer SF, Fryer JP, Kryzer TJ, et al. Pathogenic potential of IgG binding to water channel extracellular domain in neuromyelitis optica. Neurology. 2007;69:2221–31.

    Article  PubMed  CAS  Google Scholar 

  9. Roemer SF, Parisi JE, Lennon VA, Benarroch EE, Lassmann H, Bruck W, et al. Pattern-specific loss of aquaporin-4 immunoreactivity distinguishes neuromyelitis optica from multiple sclerosis. Brain. 2007;130:1194–205.

    Article  PubMed  Google Scholar 

  10. Yang H, Qiu W, Zhao X, Xiao W, Lin S, Luo Y, et al. The correlation between aquaporin-4 antibody and the visual function of patients with demyelinating optic neuritis at onset. J Ophthalmol. 2015;2015:672931.

    PubMed  PubMed Central  Google Scholar 

  11. Matiello M, Lennon VA, Jacob A, Pittock SJ, Lucchinetti CF, Wingerchuk DM, et al. NMO-IgG predicts the outcome of recurrent optic neuritis. Neurology. 2008;70:2197–200.

    Article  PubMed  CAS  Google Scholar 

  12. Polman CH, Reingold SC, Banwell B, Clanet M, Cohen JA, Filippi M, et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol. 2011;69:292–302.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lange C, Feltgen N, Junker B, Schulze-Bonsel K, Bach M. Resolving the clinical acuity categories “hand motion” and “counting fingers” using the Freiburg Visual Acuity Test (FrACT). Graefes Arch Clin Exp Ophthalmol. 2009;247:137–42.

    Article  PubMed  CAS  Google Scholar 

  14. Matsumoto Y, Mori S, Ueda K, Kurimoto T, Kanamori A, Yamada Y, et al. Impact of the anti-aquaporin-4 autoantibody on inner retinal structure, function and structure–function associations in Japanese patients with optic neuritis. PloS One. 2017;12:e0171880.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Bambo MP, Guerri N, Ferrandez B, Cameo B, Fuertes I, Polo V, et al. Evaluation of the macular ganglion cell-inner plexiform layer and the circumpapillary retinal nerve fiber layer in early to severe stages of glaucoma: correlation with central visual function and visual field indexes. Ophthalmic Res. 2017;57:216–23.

    Article  PubMed  Google Scholar 

  16. Zeitoun M. “Point by point” approach to structure–function correlation of glaucoma on the ganglion cell complex in the posterior pole (in French). J Fr Ophtalmol. 2017;40:44–60.

    Article  PubMed  CAS  Google Scholar 

  17. Kostianeva SS, Konareva-Kostianeva MI, Atanassov MA. Relationship between visual field changes and optical coherence tomography measurements in advanced open-angle glaucoma. Folia Med (Plovdiv). 2016;58:174–81.

    Article  PubMed  Google Scholar 

  18. Petzold A, de Boer JF, Schippling S, Vermersch P, Kardon R, Green A, et al. Optical coherence tomography in multiple sclerosis: a systematic review and meta-analysis. Lancet Neurol. 2010;9:921–32.

    Article  PubMed  Google Scholar 

  19. Outteryck O, Majed B, Defoort-Dhellemmes S, Vermersch P, Zephir H. A comparative optical coherence tomography study in neuromyelitis optica spectrum disorder and multiple sclerosis. Mult Scler. 2015;21:1781–93.

    Article  PubMed  CAS  Google Scholar 

  20. Nakamura M, Nakazawa T, Doi H, Hariya T, Omodaka K, Misu T, et al. Early high-dose intravenous methylprednisolone is effective in preserving retinal nerve fiber layer thickness in patients with neuromyelitis optica. Graefes Arch Clin Exp Ophthalmol. 2010;248:1777–85.

    Article  PubMed  CAS  Google Scholar 

  21. Merle H, Olindo S, Donnio A, Richer R, Smadja D, Cabre P. Retinal peripapillary nerve fiber layer thickness in neuromyelitis optica. Investig Ophthalmol Vis Sci. 2008;49:4412–7.

    Article  Google Scholar 

  22. Hodapp E, Parrish RK, Anderson DR. Clinical decisions in glaucoma. St Louis: Mosby; 1993.

    Google Scholar 

  23. Leung CK, Chong KK, Chan WM, Yiu CK, Tso MY, Woo J, et al. Comparative study of retinal nerve fiber layer measurement by StratusOCT and GDx VCC, II: structure/function regression analysis in glaucoma. Investig Ophthalmol Vis Sci. 2005;46:3702–11.

    Article  Google Scholar 

  24. Kim NR, Lee ES, Seong GJ, Kim JH, An HG, Kim CY. Structure–function relationship and diagnostic value of macular ganglion cell complex measurement using Fourier-domain OCT in glaucoma. Invest Ophthalmol Vis Sci. 2010;51:4646–51.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr Daisy J. Gonzales for reviewing this manuscript.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Niphon Chirapapaisan.

Ethics declarations

Conflicts of interest

N. Mekhasingharak, None; N. Chirapapaisan, None; P. Laowanapiban, None; S. Siritho, Speaker fees (Biogen Idec, Menarini, Merck Serono, Novartis, Pacific Healthcare, UCB), Travel fees (Biogen Idec, Menarini, Merck Serono, Novartis, Pacific Healthcare, UCB); N. Prayoonwiwat, Speaker fees (Bayer Schering Pharma, Eisai, Novartis, Pfizer Pharmaceutical, Sanofi-Aventis), Travel fees (Bayer Schering Pharma, Eisai, Novartis, Pfizer Pharmaceutical, Sanofi-Aventis); C. Satukijchai, Travel fees (Biogen Idec, Merck Serono, Novartis, UCB); J. Jitprapaikulsan, None; P. Mekhasingharak, None.

Additional information

Corresponding author: Niphon  Chirapapaisan

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mekhasingharak, N., Chirapapaisan, N., Laowanapiban, P. et al. Visual function and inner retinal structure correlations in aquaporin-4 antibody-positive optic neuritis. Jpn J Ophthalmol 62, 598–604 (2018). https://doi.org/10.1007/s10384-018-0607-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10384-018-0607-4

Keywords

Navigation