Advertisement

Japanese Journal of Ophthalmology

, Volume 62, Issue 3, pp 265–273 | Cite as

Mechanisms of vision loss in eyes with macular edema associated with retinal vein occlusion

  • Hiroyuki Iijima
Review
  • 310 Downloads

Abstract

Anti-vascular endothelial growth factor agents reduce macular edema and improve vision in eyes with macular edema associated with retinal vein occlusion (RVO), including branch RVO (BRVO) and central RVO. However, not all eyes with resolved macular edema show satisfactory best corrected visual acuity. Photoreceptor impairment can mostly explain the vision loss in these cases. Photoreceptor damage can be caused by subretinal hemorrhage in the central fovea and hard exudates or their precursor derived from concentrated lipoproteins originating from leaky retinal vessel extravasation. The contribution of neuron impairment in the inner retina, including the impairment of bipolar and ganglion cells by ischemia, indicated by the presence of a non-perfusion area (NPA), to vision loss in eyes with BRVO is insignificant. This is because the papillomacular bundle area is usually spared from NPAs in BRVO cases.

Keywords

Retinal vein occlusion Macular edema Photoreceptor Vision loss Ischemia 

Notes

Acknowledgements

This study was supported in part by a JSPS KAKENHI Grant Number 16K11263 (Grant-in-aid for scientific Research (C)) from the Japan Society for the Promotion of Science (JSPS), (Hiroyuki Iijima).

Conflict of interest

H. Iijima, None.

References

  1. 1.
    Ehlers JP, Kim SJ, Yeh S, Thorne JE, Mruthyunjaya P, Schoenberger SD, et al. Therapies for macular edema associated with branch retinal vein occlusion: a report by the American Academy of Ophthalmology. Ophthalmology. 2017;124:1412–23.CrossRefPubMedGoogle Scholar
  2. 2.
    Larsen M, Waldstein SM, Boscia F, Gerding H, Mones J, Tadayoni R, et al. Individualized ranibizumab regimen driven by stabilization criteria for central retinal vein occlusion: twelve-month results of the CRYSTAL Study. Ophthalmology. 2016;123:1101–11.CrossRefPubMedGoogle Scholar
  3. 3.
    Yeh S, Kim SJ, Ho AC, Schoenberger SD, Bakri SJ, Ehlers JP, et al. Therapies for macular edema associated with central retinal vein occlusion: a report by the American Academy of Ophthalmology. Ophthalmology. 2015;122:769–78.CrossRefPubMedGoogle Scholar
  4. 4.
    Brown DM, Campochiaro PA, Bhisitkul RB, Ho AC, Gray S, Saroj N, et al. Sustained benefits from ranibizumab for macular edema following branch retinal vein occlusion: 12-month outcomes of a phase III study. Ophthalmology. 2011;118:1594–602.CrossRefPubMedGoogle Scholar
  5. 5.
    Campochiaro PA, Brown DM, Awh CC, Lee SY, Gray S, Saroj N, et al. Sustained benefits from ranibizumab for macular edema following central retinal vein occlusion: twelve-month outcomes of a phase III study. Ophthalmology. 2011;118:2041–9.CrossRefPubMedGoogle Scholar
  6. 6.
    Clark WL, Boyer DS, Heier JS, Brown DM, Haller JA, Vitti R, et al. Intravitreal aflibercept for macular edema following branch retinal vein occlusion: 52-week results of the VIBRANT Study. Ophthalmology. 2016;123:330–6.CrossRefPubMedGoogle Scholar
  7. 7.
    Staurenghi G, Sadda S, Chakravarthy U, Spaide RF. International Nomenclature for Optical Coherence Tomography P. Proposed lexicon for anatomic landmarks in normal posterior segment spectral-domain optical coherence tomography: the IN*OCT consensus. Ophthalmology. 2014;121:1572–8.CrossRefPubMedGoogle Scholar
  8. 8.
    Ota M, Tsujikawa A, Murakami T, Kita M, Miyamoto K, Sakamoto A, et al. Association between integrity of foveal photoreceptor layer and visual acuity in branch retinal vein occlusion. Br J Ophthalmol. 2007;91:1644–9.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Ota M, Tsujikawa A, Kita M, Miyamoto K, Sakamoto A, Yamaike N, et al. Integrity of foveal photoreceptor layer in central retinal vein occlusion. Retina. 2008;28:1502–8.CrossRefPubMedGoogle Scholar
  10. 10.
    Ota M, Tsujikawa A, Murakami T, Yamaike N, Sakamoto A, Kotera Y, et al. Foveal photoreceptor layer in eyes with persistent cystoid macular edema associated with branch retinal vein occlusion. Am J Ophthalmol. 2008;145:273–80.CrossRefPubMedGoogle Scholar
  11. 11.
    Shin HJ, Chung H, Kim HC. Association between integrity of foveal photoreceptor layer and visual outcome in retinal vein occlusion. Acta Ophthalmol. 2011;89:e35–40.CrossRefPubMedGoogle Scholar
  12. 12.
    Wolf-Schnurrbusch UE, Ghanem R, Rothenbuehler SP, Enzmann V, Framme C, Wolf S. Predictors of short-term visual outcome after anti-VEGF therapy of macular edema due to central retinal vein occlusion. Invest Ophthalmol Vis Sci. 2011;52:3334–7.CrossRefPubMedGoogle Scholar
  13. 13.
    Domalpally A, Peng Q, Danis R, Blodi B, Scott IU, Ip M, et al. Association of outer retinal layer morphology with visual acuity in patients with retinal vein occlusion: SCORE Study Report 13. Eye (Lond). 2012;26:919–24.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Yunoki T, Miyakoshi A, Nakamura T, Fujita K, Fuchizawa C, Hayashi A. Treatment of macular edema due to branch retinal vein occlusion with single or multiple intravitreal injections of bevacizumab. Jpn J Ophthalmol. 2012;56:159–64.CrossRefPubMedGoogle Scholar
  15. 15.
    Sakamoto A, Tsujikawa A, Ota M, Yamaike N, Kotera Y, Miyamoto K, et al. Evaluation of potential visual acuity in eyes with macular oedema secondary to retinal vein occlusion. Clin Exp Ophthalmol. 2009;37:208–16.CrossRefPubMedGoogle Scholar
  16. 16.
    Kim M, Yu SY, Kim ES, Bae SH, Park JH, Yu HG, et al. Intravitreal ranibizumab for macular edema secondary to retinal vein occlusion. Ophthalmologica. 2012;227:132–8.CrossRefPubMedGoogle Scholar
  17. 17.
    Kang HM, Chung EJ, Kim YM, Koh HJ. Spectral-domain optical coherence tomography (SD-OCT) patterns and response to intravitreal bevacizumab therapy in macular edema associated with branch retinal vein occlusion. Graefes Arch Clin Exp Ophthalmol. 2013;251:501–8.CrossRefPubMedGoogle Scholar
  18. 18.
    Hasegawa T, Ueda T, Okamoto M, Ogata N. Presence of foveal bulge in optical coherence tomographic images in eyes with macular edema associated with branch retinal vein occlusion. Am J Ophthalmol. 2014;157(390–6):e1.Google Scholar
  19. 19.
    Spaide RF, Lee JK, Klancnik JK Jr, Gross NE. Optical coherence tomography of branch retinal vein occlusion. Retina. 2003;23:343–7.CrossRefPubMedGoogle Scholar
  20. 20.
    Muraoka Y, Tsujikawa A, Murakami T, Ogino K, Miyamoto K, Yoshimura N. Branch retinal vein occlusion-associated subretinal hemorrhage. Jpn J Ophthalmol. 2013;57:275–82.CrossRefPubMedGoogle Scholar
  21. 21.
    Hochman MA, Seery CM, Zarbin MA. Pathophysiology and management of subretinal hemorrhage. Surv Ophthalmol. 1997;42:195–213.CrossRefPubMedGoogle Scholar
  22. 22.
    Zhao L, Li B, Feng K, Han L, Ma Z, Liu Y. Bevacizumab treatment for acute branch retinal vein occlusion accompanied by subretinal hemorrhage. Curr Eye Res. 2015;40:752–6.CrossRefPubMedGoogle Scholar
  23. 23.
    Muraoka Y, Tsujikawa A, Takahashi A, Iida Y, Murakami T, Ooto S, et al. Foveal damage due to subfoveal hemorrhage associated with branch retinal vein occlusion. PLoS One. 2015;10:e0144894.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Bhisitkul RB, Winn BJ, Lee OT, Wong J, Pereira Dde S, Porco TC, et al. Neuroprotective effect of intravitreal triamcinolone acetonide against photoreceptor apoptosis in a rabbit model of subretinal hemorrhage. Invest Ophthalmol Vis Sci. 2008;49:4071–7.CrossRefPubMedGoogle Scholar
  25. 25.
    Notomi S, Hisatomi T, Murakami Y, Terasaki H, Sonoda S, Asato R, et al. Dynamic increase in extracellular ATP accelerates photoreceptor cell apoptosis via ligation of P2RX7 in subretinal hemorrhage. PLoS One. 2013;8:e53338.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Bolz M, Schmidt-Erfurth U, Deak G, Mylonas G, Kriechbaum K, Scholda C, et al. Optical coherence tomographic hyperreflective foci: a morphologic sign of lipid extravasation in diabetic macular edema. Ophthalmology. 2009;116:914–20.CrossRefPubMedGoogle Scholar
  27. 27.
    Deak GG, Bolz M, Kriechbaum K, Prager S, Mylonas G, Scholda C, et al. Effect of retinal photocoagulation on intraretinal lipid exudates in diabetic macular edema documented by optical coherence tomography. Ophthalmology. 2010;117:773–9.CrossRefPubMedGoogle Scholar
  28. 28.
    Vujosevic S, Torresin T, Berton M, Bini S, Convento E, Midena E. Diabetic macular edema with and without subfoveal neuroretinal detachment: two different morphologic and functional entities. Am J Ophthalmol. 2017;181:149–55.CrossRefPubMedGoogle Scholar
  29. 29.
    Ota M, Nishijima K, Sakamoto A, Murakami T, Takayama K, Horii T, et al. Optical coherence tomographic evaluation of foveal hard exudates in patients with diabetic maculopathy accompanying macular detachment. Ophthalmology. 2010;117:1996–2002.CrossRefPubMedGoogle Scholar
  30. 30.
    Tsujikawa A, Sakamoto A, Ota M, Kotera Y, Oh H, Miyamoto K, et al. Serous retinal detachment associated with retinal vein occlusion. Am J Ophthalmol. 2010;149(291–301):e5.Google Scholar
  31. 31.
    Kang JW, Lee H, Chung H, Kim HC. Correlation between optical coherence tomographic hyperreflective foci and visual outcomes after intravitreal bevacizumab for macular edema in branch retinal vein occlusion. Graefes Arch Clin Exp Ophthalmol. 2014;252:1413–21.CrossRefPubMedGoogle Scholar
  32. 32.
    Gallego-Pinazo R, Dolz-Marco R, Pardo-Lopez D, Martinez-Castillo S, Lleo-Perez A, Arevalo JF, et al. Ranibizumab for serous macular detachment in branch retinal vein occlusions. Graefes Arch Clin Exp Ophthalmol. 2013;251:9–14.CrossRefPubMedGoogle Scholar
  33. 33.
    Haller JA, Bandello F, Belfort R Jr, Blumenkranz MS, Gillies M, Heier J, et al. Dexamethasone intravitreal implant in patients with macular edema related to branch or central retinal vein occlusion twelve-month study results. Ophthalmology. 2011;118:2453–60.CrossRefPubMedGoogle Scholar
  34. 34.
    Yoon YH, Kim HK, Yoon HS, Kang SW, Kim JG, Park KH, et al. Improved visual outcome with early treatment in macular edema secondary to retinal vein occlusions: 6-month results of a Korean RVO study. Jpn J Ophthalmol. 2014;58:146–54.CrossRefPubMedGoogle Scholar
  35. 35.
    Iesato Y, Imai A, Hirano T, Toriyama Y, Murata T. Effect of leaking capillaries and microaneurysms in the perifoveal capillary network on resolution of macular edema by anti-vascular endothelial growth factor treatment. Jpn J Ophthalmol. 2016;60:86–94.CrossRefPubMedGoogle Scholar
  36. 36.
    Kobayashi M, Iwase T, Yamamoto K, Ra E, Murotani K, Matsui S, et al. Association between photoreceptor regeneration and visual acuity following surgery for rhegmatogenous retinal detachment. Invest Ophthalmol Vis Sci. 2016;57:889–98.CrossRefPubMedGoogle Scholar
  37. 37.
    Ra E, Ito Y, Kawano K, Iwase T, Kaneko H, Ueno S, et al. Regeneration of photoreceptor outer segments after scleral buckling surgery for rhegmatogenous retinal detachment. Am J Ophthalmol. 2017;177:17–26.CrossRefPubMedGoogle Scholar
  38. 38.
    Yuzurihara D, Iijima H. Visual outcome in central retinal and branch retinal artery occlusion. Jpn J Ophthalmol. 2004;48:490–2.CrossRefPubMedGoogle Scholar
  39. 39.
    Kunikata H, Tamai M. Cilioretinal artery occlusions following embolization of an artery to an intracranial meningioma. Graefes Arch Clin Exp Ophthalmol. 2006;244:401–3.CrossRefPubMedGoogle Scholar
  40. 40.
    Patel PS, Sadda SR. Retinal artery obstructions. In: Ryan SJ, editor. Retina. 5th ed. Philadelphia: Elsevier inc; 2013. p. 1012–25.CrossRefGoogle Scholar
  41. 41.
    Iijima H. Reduced light sensitivity due to impaired retinal perfusion in branch retinal vein occlusion. Jpn J Ophthalmol. 2018;62:151–7.CrossRefPubMedGoogle Scholar
  42. 42.
    Patz A, Yassur Y, Fine SL, Finkelstein D, Orth DH. Branch retinal venous occlusion. Trans Sect Ophthalmol Am Acad Ophthalmol Otolaryngol. 1977;83:OP373–8.PubMedGoogle Scholar
  43. 43.
    Gass JDM. Stereoscopic atlas of macular diseases, diagnosis and treatment. 2nd ed. St. Luis: C.V. Mosby; 1977. p. 282–4.Google Scholar
  44. 44.
    Michels RG, Gass JD. The natural course of retinal branch vein obstruction. Trans Am Acad Ophthalmol Otolaryngol. 1974;78:OP166–77.PubMedGoogle Scholar
  45. 45.
    Clemett RS, Kohner EM, Hamilton AM. The visual prognosis in retinal branch vein occlusion. Trans Ophthalmol Soc UK. 1973;93:523–35.PubMedGoogle Scholar
  46. 46.
    Samara WA, Shahlaee A, Sridhar J, Khan MA, Ho AC, Hsu J. Quantitative optical coherence tomography angiography features and visual function in eyes with branch retinal vein occlusion. Am J Ophthalmol. 2016;166:76–83.CrossRefPubMedGoogle Scholar
  47. 47.
    Kadomoto S, Muraoka Y, Ooto S, Miwa Y, Iida Y, Suzuma K et al. Evaluation of macular ischemia in eyes with branch retinal vein occlusion: an Optical Coherence Tomography Angiography Study. Retina. 2018;38:272–82.CrossRefPubMedGoogle Scholar
  48. 48.
    Wakabayashi T, Sato T, Hara-Ueno C, Fukushima Y, Sayanagi K, Shiraki N, et al. Retinal microvasculature and visual acuity in eyes with branch retinal vein occlusion: imaging analysis by optical coherence tomography angiography. Invest Ophthalmol Vis Sci. 2017;58:2087–94.CrossRefPubMedGoogle Scholar
  49. 49.
    Finkelstein D. Ischemic macular edema. Recognition and favorable natural history in branch vein occlusion. Arch Ophthalmol. 1992;110:1427–34.CrossRefPubMedGoogle Scholar
  50. 50.
    Noma H, Minamoto A, Funatsu H, Tsukamoto H, Nakano K, Yamashita H, et al. Intravitreal levels of vascular endothelial growth factor and interleukin-6 are correlated with macular edema in branch retinal vein occlusion. Graefes Arch Clin Exp Ophthalmol. 2006;244:309–15.CrossRefPubMedGoogle Scholar
  51. 51.
    Tadayoni R, Waldstein SM, Boscia F, Gerding H, Pearce I, Priglinger S, et al. Individualized stabilization criteria-driven ranibizumab versus laser in branch retinal vein occlusion: six-month results of BRIGHTER. Ophthalmology. 2016;123:1332–44.CrossRefPubMedGoogle Scholar
  52. 52.
    Ahmed I, Ai E. Cystoid macular edema. In: Yanoff M, Duker JS, editors. Ophthalmology. 1st ed. Amsterdam: Elsevier; 1999. p. 8.34.2.Google Scholar
  53. 53.
    Vecino E, Rodriguez FD, Ruzafa N, Pereiro X, Sharma SC. Glia-neuron interactions in the mammalian retina. Prog Retin Eye Res. 2016;51:1–40.CrossRefPubMedGoogle Scholar
  54. 54.
    Reichenbach A, Bringmann A. New functions of Muller cells. Glia. 2013;61:651–78.CrossRefPubMedGoogle Scholar
  55. 55.
    Gass JD. Muller cell cone, an overlooked part of the anatomy of the fovea centralis: hypotheses concerning its role in the pathogenesis of macular hole and foveomacualr retinoschisis. Arch Ophthalmol. 1999;117:821–3.CrossRefPubMedGoogle Scholar
  56. 56.
    Yasuda S, Kachi S, Ueno S, Piao CH, Terasaki H. Flicker electroretinograms before and after intravitreal ranibizumab injection in eyes with central retinal vein occlusion. Acta Ophthalmol. 2015;93:e465–8.CrossRefPubMedGoogle Scholar
  57. 57.
    Scott IU, VanVeldhuisen PC, Oden NL, Ip MS, Blodi BA, Jumper JM, et al. SCORE Study report 1: baseline associations between central retinal thickness and visual acuity in patients with retinal vein occlusion. Ophthalmology. 2009;116:504–12.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Ou WC, Brown DM, Payne JF, Wykoff CC. Relationship between visual acuity and retinal thickness during anti-vascular endothelial growth factor therapy for retinal diseases. Am J Ophthalmol. 2017;180:8–17.CrossRefPubMedGoogle Scholar

Copyright information

© Japanese Ophthalmological Society 2018

Authors and Affiliations

  1. 1.Department of OphthalmologyUniversity of YamanashiChuoJapan

Personalised recommendations