Skip to main content

Advertisement

Log in

Spectral domain optical coherence tomography and fundus autofluorescence findings in cytomegalovirus retinitis in HIV-infected patients

  • Clinical Investigation
  • Published:
Japanese Journal of Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To assess the usefulness of spectral domain optical coherence tomography (SD-OCT) and fundus autofluorescence (FAF) findings in cytomegalovirus (CMV) retinitis.

Study design

Observational case series.

Methods

Thirteen eyes of 11 human immunodeficiency virus (HIV)-positive patients with CMV retinitis underwent full ophthalmologic examinations, SD-OCT, and 4 eyes of 4 patients underwent FAF. FAF images included short-wavelength autofluorescence (SW-AF) and near-infrared autofluorescence (IR-AF). CMV retinitis was classified into proposed categories of acute, subacute, remission, and recurrent; the acute stage was further subdivided into initial, early, and late stages.

Results

In the initial stage, vertical structural disruption of all retinal layers was observed by SD-OCT, and FAF showed hyperautofluorescence on SW-AF and hypoautofluorescence on IR-AF. In the early stage, SD-OCT showed significant retinal thickening; cells and debris from the retinal surface to the vitreous; enlarged vessels with/without thickened vessel walls; and highly complicated serous retinal detachment. In the late to subacute stage, features observed included rhegmatogenous retinal detachment with shrinking posterior hyaloid membrane and waving from the ellipsoid zone to the retinal pigment epithelium. In remission, FAF findings were hypoautofluorescence on SW-AF and hyperautofluorescence on IR-AF.

Conclusion

Although the number of examined eyes was limited, SD-OCT and FAF provide new information in various stages of CMV retinitis in patients with HIV infection that is not obtainable by conventional examination and which may be of great benefit when screening for the initial stage of CMV retinitis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Palella FJ Jr, Delaney KM, Moorman AC, Loveless MO, Fuhrer J, Satten GA, et al. Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. HIV Outpatient Study Investigators. N Engl J Med. 1998;338:853–60.

    Article  PubMed  Google Scholar 

  2. Holland GN. AIDS and ophthalmology: the first quarter century. Am J Ophthalmol. 2008;145:397–408.

    Article  PubMed  Google Scholar 

  3. Holland GN, Buhles WC Jr, Mastre B, Kaplan HJ. A controlled retrospective study of ganciclovir treatment for cytomegalovirus retinopathy. Use of a standardized system for the assessment of disease outcome. Arch Ophthalmol. 1989;107:1759–66.

    Article  CAS  PubMed  Google Scholar 

  4. Wojtkowski M, Leitgeb RA, Kowalczyk A, Bajraszewski T, Fercher AF. In vivo human retinal imaging by Fourier domain optical coherence tomography. J Biomed Opt. 2002;7:457–63.

    Article  PubMed  Google Scholar 

  5. Cense B, Nassif NA, Chen TC, Pierce MC, Yun SH, Park BH, et al. Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography. Opt Express. 2004;12:2435–47.

    Article  PubMed  Google Scholar 

  6. Wojtkowski M, Srinivasan VJ, Ko TH, Fujimoto JG, Kowalczyk A, Duker JS. Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation. Opt Express. 2004;12:2404–22.

    Article  PubMed  Google Scholar 

  7. Leitgeb RA, Drexler W, Unterhuber A, Hermann B, Bajraszewski T, Le T, et al. Ultrahigh resolution Fourier domain optical coherence tomography. Opt Express. 2004;12:2156–65.

    Article  CAS  PubMed  Google Scholar 

  8. Freidlin J, Sharma MC, Goldstein DA. Subretinal hemorrhage in cytomegalovirus retinitis. Ophthalmic Surg Lasers Imaging. 2005;36:73–5.

    PubMed  Google Scholar 

  9. Stewart MW, Brazis PW, Barrett KM, Eidelman BH, Mendez JC. Optical coherence tomography in a case of bilateral neuroretinitis. J Neuroophthalmol. 2005;25:131–3.

    Article  PubMed  Google Scholar 

  10. Miserocchi E, Modorati G, Brancato R. Immune recovery uveitis in an iatrogenically immunosuppressed patient. Eur J Ophthalmol. 2005;15:510–2.

    Article  CAS  PubMed  Google Scholar 

  11. Morrison VL, Kozak I, LaBree LD, Azen SP, Kayicioglu OO, Freeman WR. Intravitreal triamcinolone acetonide for the treatment of immune recovery uveitis macular edema. Ophthalmology. 2007;114:334–9.

    Article  PubMed  Google Scholar 

  12. Baker ML, Allen P, Shortt J, Lewin SR, Spencer A. Immune recovery uveitis in an HIV-negative individual. Clin Exp Ophthalmol. 2007;35:189–90.

    Article  PubMed  Google Scholar 

  13. Chan CK, Lin SG. Subfoveal choroidal neovascularization associated with cytomegalovirus retinitis and AIDS. Can J Ophthalmol. 2008;43:488–9.

    Article  PubMed  Google Scholar 

  14. Giani A, Sabella P, Eandi CM, Staurenghi G. Spectral-domain optical coherence tomography findings in a case of frosted retinal branch angiitis. Eye. 2010;24:943–4.

    Article  CAS  PubMed  Google Scholar 

  15. Costagliola C, Romano MR, Parmeggiani F, Dell’omo R, Cultrera R. Epiretinal membrane in a 12-year-old immunocompetent girl with cytomegalovirus infection. Eur J Ophthalmol. 2009;19:1099–102.

    Article  Google Scholar 

  16. Sun LL, Goodwin T, Park JJ. Optical coherence tomography changes in macular CMV retinitis. Digit J Ophthalmol. 2012;18:1–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Park DH, Kim SY, Shin JP. Bilateral cytomegalovirus retinitis with unilateral optic neuritis in Good syndrome. Jpn J Ophthalmol. 2010;54:246–8.

    Article  PubMed  Google Scholar 

  18. Kurup SP, Khan S, Gill MK. Spectral domain optical coherence tomography in the evaluation and management of infectious retinitis. Retina. 2014;34:2233–41.

    Article  PubMed  Google Scholar 

  19. Brar M, Kozak I, Freeman WR, Oster SF, Mojana F, Yuson RM. Vitreoretinal interface abnormalities in healed cytomegalovirus retinitis. Retina. 2010;30:1262–6.

    Article  PubMed  Google Scholar 

  20. Yeh S, Forooghian F, Faia LJ, Weichel ED, Wong WT, Sen HN, et al. Fundus autofluorescence changes in cytomegalovirus retinitis. Retina. 2010;30:42–50.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Keilhauer CN, Delori FC. Near-infrared autofluorescence imaging of the fundus: visualization of ocular melanin. Invest Ophthalmol Vis Sci. 2006;47:3556–64.

    Article  PubMed  Google Scholar 

  22. Wohl DA, Kendall MA, Andersen J, Crumpacker C, Spector SA, Feinberg J, et al. Low rate of CMV end-organ disease in HIV-infected patients despite low CD4+ cell counts and CMV viremia: results of ACTG protocol A5030. HIV Clin Trials. 2009;10:143–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Takase H, Okada AA, Goto H, Mizuki N, Namba K, Ohguro N, et al. Development and validation of new diagnostic criteria for acute retinal necrosis. Jpn J Ophthalmol. 2015;59:14–20.

    Article  CAS  PubMed  Google Scholar 

  24. Mizushima D, Nishijima T, Yashiro S, Teruya K, Kikuchi Y, Katai N, et al. Diagnostic utility of quantitative plasma cytomegalovirus DNA PCR for cytomegalovirus end-organ diseases in patients with HIV-1 infection. J Acquir Immune Defic Syndr. 2015;68:140–6.

    Article  CAS  PubMed  Google Scholar 

  25. Jabs DA, Nussenblatt RB, Rosenbaum JT. Standardization of Uveitis Nomenclature (SUN) Working Group. Standardization of uveitis nomenclature for reporting clinical data. Results of the First International Workshop. Am J Ophthalmol. 2005;140:509–16.

    Article  PubMed  Google Scholar 

  26. Holland GN, Buhles WC Jr, Mastre B, Kaplan HJ. A controlled retrospective study of ganciclovir treatment for cytomegalovirus retinopathy. Use of a standardized system for the assessment of disease outcome. UCLA CMV Retinopathy. Study Group. Arch Ophthalmol. 1989;107:1759–66.

    Article  CAS  PubMed  Google Scholar 

  27. Nishijima T, Yashiro S, Teruya K, Kikuchi Y, Katai N, Oka S, Gatanaga H. Routine eye screening by an ophthalmologist is clinically useful for HIV-1-infected patients with CD4 count less than 200/μL. PLoS One. 2015;10:e0136747.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kozak I, Bartsch DU, Cheng L, Freeman WR. In vivo histology of cotton-wool spots using high-resolution optical coherence tomography. Am J Ophthalmol. 2006;141:748–50.

    Article  PubMed  Google Scholar 

  29. Kozak I, Bartsch DU, Cheng L, Freeman WR. Hyperreflective sign in resolved cotton wool spots using high-resolution optical coherence tomography and optical coherence tomography ophthalmoscopy. Ophthalmology. 2007;114:537–43.

    Article  PubMed  Google Scholar 

  30. Gomez ML, Mojana F, Bartsch DU, Freeman WR. Imaging of long-term retinal damage after resolved cotton wool spots. Ophthalmology. 2009;116:2407–14.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kashiwase M, Yamauchi Y, Sata T, Nagata Y, Usui N, Mochizuki M, et al. Histopathological findings in cytomegalovirus retinitis. Nippon Ganka Gakkai Zasshi. 2004;108:415–22 (in Japanese).

    PubMed  Google Scholar 

  32. Rodrigues MM, Palestine A, Nussenblatt R, Masur H, Macher AM. Unilateral cytomegalovirus retinochoroiditis and bilateral cytoid bodies in a bisexual man with the acquired immunodeficiency syndrome. Ophthalmology. 1984;91:1577–82.

    Article  CAS  PubMed  Google Scholar 

  33. Pepose JS, Holland GN, Nestor MS, Cochran AJ, Foos RY. Acquired immune deficiency syndrome. Pathogenic mechanisms of ocular disease. Ophthalmology. 1985;92:472–84.

    CAS  PubMed  Google Scholar 

  34. Bachman DM, Rodrigues MM, Chu FC, Straus SE, Cogan DG, Macher AM. Culture-proven cytomegalovirus retinitis in a homosexual man with the acquired immunodeficiency syndrome. Ophthalmology. 1982;89:797–804.

    Article  CAS  PubMed  Google Scholar 

  35. Keino H, Okada AA, Watanabe T, Echizen N, Inoue M, Takayama N, et al. Spectral-domain optical coherence tomography patterns in intraocular lymphoma. Ocul Immunol Inflamm. 2016;24:268–73.

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a Grants-in-Aid for Research from the National Center for Global Health and Medicine (26A201). Professional medical English editing was provided by ThinkSCIENCE Inc., Tokyo, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeko Yashiro.

Ethics declarations

Conflicts of Interest

S. Yashiro, None; T. Nishijima, None; Y. Yamamoto, Grant (Santen Pharmaceutical’s Founder); Y. Sekine, None; N. Y. -Hata, None; T. Iida, Grant (Bayer Yakuhin, Canon, Kowa, Nidek, Novartis Pharma, Santen Pharmaceutical), Lecture fees (Bayer Yakuhin, Novartis Pharma, Santen Pharmaceutical); S. Oka, None.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yashiro, S., Nishijima, T., Yamamoto, Y. et al. Spectral domain optical coherence tomography and fundus autofluorescence findings in cytomegalovirus retinitis in HIV-infected patients. Jpn J Ophthalmol 62, 373–389 (2018). https://doi.org/10.1007/s10384-018-0574-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10384-018-0574-9

Keywords

Navigation