Die Schilddrüse im Alter

Physiologie und Pathologie

The thyroid gland in old age

Physiology and pathology

Zusammenfassung

Gesunde ältere Menschen weisen Änderungen im Schilddrüsenhormonmetabolismus auf, die möglicherweise sogar aktiv zur Langlebigkeit beitragen können. Dies gilt es, auch bei der Behandlung von – prinzipiell ebenso wie bei Jüngeren auftretenden – Schilddrüsenerkrankungen zu berücksichtigen. Besonderheiten ergeben sich auch durch Komorbiditäten, insbesondere im kardiovaskulären Bereich, sodass etwa hyperthyreote Stoffwechsellagen schlechter toleriert werden als bei Herzgesunden. Benigne Knotenstrumen nehmen im Alter an Häufigkeit zu und sollen bei mechanischer Indikation operiert werden. Das Therapiekonzept bei malignen Erkrankungen muss in die Gesamtsituation des Patienten eingebettet werden, unterscheidet sich allerdings prinzipiell nicht von dem jüngerer Patienten. Von einer adäquaten, risikoadaptierten Therapie von Schilddrüsenerkrankungen profitieren auch betagte und hochbetagte Menschen, sodass eine entsprechende Diagnostik und Abklärung in jedem Lebensalter sinnvoll sind.

Summary

In healthy older people the metabolism of thyroid hormones is physiologically altered and can possibly even actively contribute to longevity. This should also be taken into consideration in the treatment of diseases of the thyroid and principally also for younger patients. For example, with progressing age comorbidities become more prevalent and especially in cardiovascular diseases, hyperthyroidism is less well tolerated, and should be treated more aggressively. Benign multinodular goiter also becomes more prevalent in old age and should be surgically treated when causing mechanical symptoms. The treatment concept for malignant diseases should be adapted to the holistic situation of the patient but principally in the same manner as in younger patients. Old and very old patients also benefit from adequate, risk-adapted treatment of thyroid gland diseases so that appropriate diagnostics and clarification are meaningful, regardless of age.

This is a preview of subscription content, log in to check access.

Literatur

  1. 1.

    Statistik Austria. Webpräsenz. 2020. www.statistik-austria.at. Zugriffen: 20.4.2020

  2. 2.

    WHO. Elderly population. 2020. http://origin.searo.who.int/entity/health_situation_trends/data/chi/elderly-population/en/. Zugriffen: 20.4.2020

  3. 3.

    Hawkes K, Coxwoth JE. Grandmothers and the evolution of human longevity: a review of findings and future directions. Evol Anthropol. 2013;22(6):294–302.

    PubMed  Google Scholar 

  4. 4.

    Morreale de Escobar G, Obregon MJ, Escobar del Rey F. Role of thyroid hormone during early brain development. Eur J Endocrinol. 2004;151:U25–U37.

    CAS  PubMed  Google Scholar 

  5. 5.

    Mariotti S, Franceschi C, Cossarizza A, et al. The aging thyroid. Endocr Rev. 1995;16(6):686–715.

    CAS  PubMed  Google Scholar 

  6. 6.

    Veldhuis JD. Changes in pituitary function with aging and implications for patient care. Nat Rev Endocrinol. 2013;9(4):205–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Bowers J, Terrein J, Clerget-Froidevaux MS, et al. Thyroid hormone signaling and homeostasis during aging. Endocr Rev. 2013;34(4):556–89.

    CAS  PubMed  Google Scholar 

  8. 8.

    Hollowell JG, Staehling NW, Flanders WD, et al. Serum TSH, T(4), and thyroid antibodies in the United States population (1988 to 1994): National Health and Nutrition Examination Survey (NHANES III). J Clin Endocrinol Metab. 2002;87(2):489–99.

    CAS  PubMed  Google Scholar 

  9. 9.

    Ravaglia G, Forti P, Maioli F. Blood micronutrient and thyroid hormone concentrations in the oldest-old. J Clin Endocrinol Metab. 2000;85:2260–5.

    CAS  PubMed  Google Scholar 

  10. 10.

    Atzmon G, Barzilai N, Hollowell JG, et al. Extreme longevity is associated with increased serum thyrotropin. J Clin Endocrinol Metab. 2009;94(4):1251–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Atzmon G, Barzilai N, Surks MI, Gabriely I. Genetic predisposition to elevated serum thyrotropin is associated with exceptional longevity. J Clin Endocrinol Metab. 2009;94(12):4768–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Rozing MP, Houwing-Duistermaat JJ, Slagboom PE, Beekman M, Frölich M, de Craen AJ, et al. Familial longevity is associated with decreased thyroid function. J Clin Endocrinol Metab. 2010;95:4979–84.

    CAS  PubMed  Google Scholar 

  13. 13.

    Jansen SW, Roelfsema F, van der Spoel E. Familial longevity is associated with higher TSH secretion and strong TSH-fT3 relationship. J Clin Endocrinol Metab. 2015;100(10):3806–13.

    CAS  PubMed  Google Scholar 

  14. 14.

    Ogliari G, Smit RA, van der Spoel E, et al. Thyroid status and mortality risk in older adults with normal thyrotropin: sex differences in the Milan geriatrics 75+ cohort study. J Gerontol A Biol Sci Med Sci. 2017;72(4):554–9.

    PubMed  Google Scholar 

  15. 15.

    Bremner AP, Feddema P, Leedmann PJ, et al. Age-related changes in thyroid function: a longitudinal study of a community-based cohort. J Clin Endocrinol Metab. 2012;97(5):1554–62.

    CAS  PubMed  Google Scholar 

  16. 16.

    Waring AC, Arnold AM, Newman AB, et al. Longitudinal changes in thyroid function in the oldest old and survival: the cardiovascular health study all-stars study. J Clin Endocrinol Metab. 2012;97(11):3944–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    van de Ven AC, Netea-Maier RT, Smit JW, et al. Thyrotropin versus age relation as and indicator of historical iodine intake. Thyroid. 2015;25:629–34.

    PubMed  Google Scholar 

  18. 18.

    Pearce SH, Razvi S, Yadegarfar ME, et al. Serum thyroid function, mortality and disability in advanced old age: the newcastle 85+ study. J Clin Endocrinol Metab. 2016;101(11):4385–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Vadiveloo T, Donnan PT, Murphy MJ, et al. Age- and gender-specific TSH reference intervals in people with no obvious thyroid disease in Tayside, Scotland: the thyroid epidemiology, audit and research study (TEARS). J Clin Endocrinol Metab. 2013;98(3):1147–53.

    CAS  PubMed  Google Scholar 

  20. 20.

    Gourmelon R, Donadio-Andréi S, Chikh K, et al. Subclinical hypothyroidism: Is it really subclinical with aging? Aging Dis. 2019;10(3):520–9.

    PubMed  PubMed Central  Google Scholar 

  21. 21.

    Garber JR, Cobin RH, Gharib H, Hennessey JV, et al. Clinical practice guidelines for hypothyroidism in adults: cosponsored by the American Association of Clinical Endocrinologists and the American Thyroid Association. Endocr Pract. 2012;18(6):988–1028.

    PubMed  Google Scholar 

  22. 22.

    Wiersinga WM, Duntas L, Fadeyev V, et al. 2012 ETA guidelines: the use of L‑T4 + L‑T3 in the treatment of hypothyroidism. Eur Thyroid J. 2012;1(2):55–71.

    PubMed  PubMed Central  Google Scholar 

  23. 23.

    Gupta G, Sharma P, Kumar P, Itagappa M. Study on subclinical hypothyroidism and its association with various inflammatory markers. J Clin Diagn Res. 2015;9(11):BC4–BC6.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Yang C, Lu M, Chen W, et al. Thyrotropin aggravates atherosclerosis by promoting macrophage inflammation in plaques. J Exp Med. 2019;216(5):1182.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Bano A, Chaker L, de Maat MPM, et al. Thyroid function and cardiovascular disease: the mediating role of coagulation factirs. J Clin Endocrinol Metab. 2019;104:3203–12.

    PubMed  Google Scholar 

  26. 26.

    Cai Y, Manio MM, Leung GP, et al. Thyroid hormone affects both endothelial and vascular smooth muscle cells in rat arteries. Eur J Pharmacol. 2015;747:18–28.

    CAS  PubMed  Google Scholar 

  27. 27.

    Lekakis J, Papamichael C, Alevizaki M, et al. Flow-mediated, endothelium-dependent vasodilation is impaired in subjects with hypothyroidism, boderline hypothyroidism, and high-normal serum (TSH) values. Thyroid. 1997;7:411–4.

    CAS  PubMed  Google Scholar 

  28. 28.

    Beukhof CM, Massolt ET, Visser TJ, et al. Effects of thyrotropin on peripheral thyroid hormone metabolism and serum lipids. Thyroid. 2018;28(2):168–74.

    CAS  PubMed  Google Scholar 

  29. 29.

    Razvi S, Ingoe L, Keeka G, et al. The beneficial effect of L‑thyroxine on cardiovascular risk factors, endothelial function, and quality of life in subclinical hypothyroidism: randomized, crossover trial. J Clin Endocrinol Metab. 2007;92(5):1715–23.

    CAS  PubMed  Google Scholar 

  30. 30.

    Andersen MN, Olsen AM, Madsen JC, et al. Levothyroxine substitution in patients with subclinical hypothyroidism and the risk of myocardial infarction and mortality. PLoS One. 2015;10(6):e129793.

    PubMed  PubMed Central  Google Scholar 

  31. 31.

    Hak AE, Pols HA, Visser TJ, et al. Subclinical hypothyroidism is an independent risk factor for atherosclerosis and myocardial infarction in elderly women: the Rotterdam study. Ann Intern Med. 2000;132(4):270–8.

    CAS  PubMed  Google Scholar 

  32. 32.

    Thayakaran R, Adderley NJ, Sainsbury C, et al. Thyroid replacement therapy, thyroid stimulating hormone concentrations, and long term health outcomes in patients with hypothyroidism: longitudinal study. BMJ. 2019;366:I4892.

    Google Scholar 

  33. 33.

    He W, Li S, Zhang JA, et al. Effect of levothyroxine on blood pressure in patients with subclinical hypothyroidism: a systematic review and meta-analysis. Front Endocrinol. 2018;9:454.

    Google Scholar 

  34. 34.

    Meier C, Staub JJ, Roth CB, et al. TSH-controlled L‑thyroxine therapy reduces cholesterol levels and clinical symptoms in subclinical hypothyroidism: a double blind, placebo-controlled trial (Basel Thyroid Study). J Clin Endocrinol Metab. 2001;86(10):4860–6.

    CAS  PubMed  Google Scholar 

  35. 35.

    Calsolaro V, Niccolai F, Pasqualetti N. Overt and subclinical hypothyroidism in the elderly: when to treat? Front Endocrinol (Lausanne). 2019;10:177.

    Google Scholar 

  36. 36.

    Gussekloo J, van Exel E, de Craen AJ, et al. Thyroid status, disability and cognitive function, and survival in old age. JAMA. 2004;292(21):2591–9.

    CAS  PubMed  Google Scholar 

  37. 37.

    Pasqualetti G, Pagano G, Rengo G. Subclinical hypothyroidism and cognitive impairment: systematic review and meta-analysis. J Clin Endocrinol Metab. 2015;100(11):4240–8.

    CAS  PubMed  Google Scholar 

  38. 38.

    Virgini VS, Rodondi N, Cawthon PM. Subclinical thyroid dysfunction and frailty among older men. J Clin Endocrinol Metab. 2015;100(12):4524–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Stott DJ, Rodondi N, Kearney PM, et al. Thyroid hormone therapy for older adults with subclinical hypothyroidism. N Engl J Med. 2017;376:2534–44.

    CAS  PubMed  Google Scholar 

  40. 40.

    Roberts L, McCahon D, Johnson O. Stability of thyroid function in older adults: the Birmingham Elderly Thyroid study. Br J Gen Pract. 2018;68(675):e718–e26.

    PubMed  PubMed Central  Google Scholar 

  41. 41.

    Pearce SHS, Brabant G, Duntas LH, et al. ETA guideline: management of subclinical hypothyroidism. Eur Thyroid J. 2013;2:215–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Bensenor IM, Olmos RD, Lotufo PA. Hypothyroidism in the elderly: diagnosis and management. Clin Interv Aging. 2012;7:97–111.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Vanderpump MP, Tunbridge WM, French JM. The incidence of thyroid disorders in the community: a twenty-year follow-up of the Whickham Survey. Clin Endocrinol (Oxf). 1995;43(1):55–68.

    CAS  Google Scholar 

  44. 44.

    Knudsen N, Bülow I, Jørgensen T, et al. Comparative study of thyroid function and types of thyroid dysfunction in two areas in Denmark with slightly different iodine status. Eur J Endocrinol. 2000;143:485–91.

    CAS  PubMed  Google Scholar 

  45. 45.

    Laurberg P, Pedersen KM, Hreidarsson A, et al. Iodine intake and the pattern of thyroid disorders: a comparative epidemiological study of thyroid abnormalities in the elderly in Iceland and in Jutland, Denmark. J Clin Endocrinol Metab. 1998;83(3):765–9.

    CAS  PubMed  Google Scholar 

  46. 46.

    Ross DS, Burch HB, Cooper DS. 2016 American Thyroid Association guidelines for diagnosis and management of hyperthyroidism and other causes of thyrotoxicosis. Thyroid. 2016;26(10):1343–421.

    PubMed  Google Scholar 

  47. 47.

    Trivalle C, Doucet J, Chassagne P. Differences in the signs and symptoms of hyperthyroidism in older and younger patients. J Am Geriatr Soc. 1996;44(1):50–3.

    CAS  PubMed  Google Scholar 

  48. 48.

    Sawin CT, Geller A, Wolf PA, et al. Low serum thyrotropin concentrations as a risk factor for atrial fibrillation in older persons. N Engl J Med. 1994;331:1249–52.

    CAS  PubMed  Google Scholar 

  49. 49.

    Selmer C, Olesen JB, Hansen ML, Lindhardsen J, Olsen AM, Madsen JC, et al. The spectrum of thyroid disease and risk of new onset atrial fibrillation: a large population cohort study. BMJ. 2012;345:e7895.

    PubMed  PubMed Central  Google Scholar 

  50. 50.

    Baumgartner C, da Costa BR, Collet TH. Thyroid function within the normal range, subclinical hypothyroidism, and the risk of atrial fibrillation. Circulation. 2017;136:2100–16.

    PubMed  PubMed Central  Google Scholar 

  51. 51.

    Heidari R, Niknahad H, Jamshidzadeh A, et al. Factors affecting drug-induced liver injury: antithyroid drugs as instances. Clin Mol Hepatol. 2014;20(3):237–48.

    PubMed  PubMed Central  Google Scholar 

  52. 52.

    Cooper DS, Goldminz D, Levin AA. Agranulocytosis associated with antithyroid drugs. Effects of patient age and drug dose. Ann Intern Med. 1983;98(1):26–9.

    CAS  PubMed  Google Scholar 

  53. 53.

    Azizi F, Takyar M, Madreseh E, et al. Treatment of toxic multinodular goiter: comparison of radioiodine and long-term methimazole treatment. Thyroid. 2019;29(5):625–530.

    CAS  PubMed  Google Scholar 

  54. 54.

    Bonnema SJ, Hegedus L. Radioiodine therapy in benign thyroid diseases: effects, side effects, and factors affecting therapeutic outcome. Endocr Rev. 2012;33:920–80.

    CAS  PubMed  Google Scholar 

  55. 55.

    Torring O, Tallstedt L, Wallin G, et al. Graves’ hyperthyroidism: treatment with antithyroid drugs, surgery, or radioiodine—a prospective, randomized study. Thyroid Study Group. J Clin Endocrinol Metab. 1996;81:2986–93.

    CAS  PubMed  Google Scholar 

  56. 56.

    Nygaard B, Hegedus L, Gervil M, et al. Influence of compensated radioiodine therapy on thyroid volume and incidence of hypothyroidism in Graves’ disease. J Intern Med. 1995;238:491–7.

    CAS  PubMed  Google Scholar 

  57. 57.

    Pajamäki N, Metso S, Hakala T, et al. Long-term cardiovascular morbidity and mortality in patients treated for differentiated thyroid cancer. Clin Endocrinol. 2018;88(2):303–10.

    Google Scholar 

  58. 58.

    Moon JH, Kim KM, Oh TJ, et al. The effect of TSH suppression on vertebral trabecular bone scores in patients with differentiated thyroid carcinoma. J Clin Endocrinol Metab. 2017;102(1):78–85.

    PubMed  Google Scholar 

  59. 59.

    Kachui A, Tabatabaizadeh SM, Iraj B. Evaluation of bone density, serum total and ionized calcium, alkaline phosphatase and 25-hydroxy vitamin D in papillary thyroid carcinoma, and their relationship with TSH suppression by levothyroxine. Adv Biomed Res. 2017;6:94.

    PubMed  PubMed Central  Google Scholar 

  60. 60.

    Blum MR, Bauer DC, Collet TH, et al. Subclinical thyroid dysfunction and fracture risk: a meta-analysis. JAMA. 2015;313(20):2055–65.

    PubMed  PubMed Central  Google Scholar 

  61. 61.

    Park J, Blackburn BE, Ganz PA. Risk factors for cardiovascular disease among thyroid cancer survivors: findings from the utah cancer survivors study. J Clin Endocrinol Metab. 2018;103:2468–77.

    PubMed  PubMed Central  Google Scholar 

  62. 62.

    Collet TH, Gussekloo J, Bauer DC, et al. Subclinical hyperthyroidism and the risk of coronary heart disease and mortality. Arch Intern Med. 2012;172(10):799–809.

    CAS  PubMed  Google Scholar 

  63. 63.

    Parle JV, Maisonneuve P, Sheppard MC, et al. Prediction of all-cause and cardiovascular mortality in elderly people from one low serum thyrotropin result: a 10-year cohort study. Lancet. 2001;358(9285):861–5.

    CAS  PubMed  Google Scholar 

  64. 64.

    Bano A, Dhana K, Chaker L, et al. Association of thyroid function with life expectancy with and without cardiovascular disease. JAMA Intern Med. 2017;177(11):1650–7.

    PubMed  PubMed Central  Google Scholar 

  65. 65.

    Ceresini G, Ceda GP, Lauretani F, et al. Thyroid status and 6‑year mortality in elderly people living in a mildly iodine-deficient area: the aging in the Chianti Area study. J Am Geriatr Soc. 2013;61(6):868–74.

    PubMed  PubMed Central  Google Scholar 

  66. 66.

    Yeap BB, Alfonso H, Hankey GJ, et al. Higher free thyroxine levels are associated with all-cause mortality in euthyroid older men: the Health in Men study. Eur J Endocrinol. 2013;169(4):401–8.

    CAS  PubMed  Google Scholar 

  67. 67.

    Bano A, Chaker L, Schoufour J, et al. High circulating free thyroxine levels may increase the risk of frailty: the Rotterdam study. J Clin Endocrinol Metab. 2018;103(1):328–35.

    PubMed  Google Scholar 

  68. 68.

    Khan SR, Chaker L, Ruiter R, et al. Thyroid function and cancer risk: the Rotterdam study. J Clin Endocrinol Metab. 2016;101(12):5030–6.

    CAS  PubMed  Google Scholar 

  69. 69.

    Aubert CE, Bauer DC, da Costa BR. The association between subclinical thyroid dysfunction and dementia: the Health, Aging and Body Composition (Health ABC) study. Clin Endocrinol (Oxf). 2017;87(5):617–26.

    CAS  Google Scholar 

  70. 70.

    Ceresini G, Lauretani F, Maggio M, et al. Thyroid function abnormalities and cognitive impairment in elderly people: results of the Invecchiare in Chianti study. J Am Geriatr Soc. 2009;57(1):89–93.

    PubMed  Google Scholar 

  71. 71.

    Das G, Ojewuyi TA, Baglioni P, et al. Serum thyrotropin at baseline predicts the natural course of subclinical hyperthyroidism. Clin Endocrinol. 2012;77:146–51.

    CAS  Google Scholar 

  72. 72.

    Biondi B, Bartalena L, Cooper DS, et al. The 2015 European Thyroid Association guidelines on diagnosis and treatment of endogenous subclinical hyperthyroidism. Eur Thyroid J. 2015;4:149–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Martino E, Bartalena L, Bogazzi F, et al. The effects of amiodarone on the thyroid. Endocr Rev. 2001;22(2):240–54.

    CAS  PubMed  Google Scholar 

  74. 74.

    Bartalena L, Bogazzi F, Chiovato L, et al. European Thyroid Association (ETA) guidelines for the management of amiodarone-associated thyroid dysfunction. Eur Thyroid J. 2018;7:55–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Lind P, Klima G, Wakonig P, et al. Urinary excretion of iodide and incidence of goiter in Styria—studies 20 years after the introduction of compulsory iodinated salt prophylaxis. Acta Med Austriaca. 1985;12:45–50.

    CAS  PubMed  Google Scholar 

  76. 76.

    Heinisch M, Kumnig G, Asböck D, et al. Goiter prevalence and urinary iodide excretion in a formerly iodine-deficient region after introduction of statutory iodization of common salt. Thyroid. 2002;12:809–14.

    CAS  PubMed  Google Scholar 

  77. 77.

    Lind P, Kumnig G, Heinisch M, et al. Iodine supplementation in Austria: methods and results. Thyroid. 2002;12(10):903–7.

    CAS  PubMed  Google Scholar 

  78. 78.

    Gallowitsch HJ, Mikosch P, Kresnik E, et al. Thyroid volume and iodine supply of 6 to 17 year old students. Results 3 years after the introduction of increased iodized salt. Nuklearmedizin. 1994;33:235–8.

    CAS  PubMed  Google Scholar 

  79. 79.

    Bundesministerium für Digitalisierung und Wirtschaftsstandort. Bundesgesetz über den Verkehr mit Speisesalz (Speisesalzgesetz) – BGBl. Nr. 112/1963 and BGBl. Nr. 288/1990. 2020. https://www.ris.bka.gv.at/GeltendeFassung.wxe?Abfrage=Bundesnormen&Gesetzesnummer=10010311. Zugriffen: 20.4.2020

  80. 80.

    Buchinger W. Jodversorgung in Österreich 2018. 2018. https://www.schilddruesengesellschaft.at/sites/osdg.at/files/upload/18_Buchinger_JodversorgunginOesterreich2018.pdf. Zugriffen: 20.4.2020

  81. 81.

    Lindorfer H, Krebs M, Kautzky-Willer A, et al. Iodine deficiency in pregnant women in Austria. Eur J Clin Nutr. 2015;69:349–54.

    CAS  PubMed  Google Scholar 

  82. 82.

    Hannan SA. The magnificent seven: a history of modern thyroid surgery. Int J Surg. 2006;4:187–91.

    PubMed  Google Scholar 

  83. 83.

    Verloop H, Louwerens M, Schoones JW. Risk of hypothyroidism following hemithyroidectomy: systematic review and meta-analysis of prognostic studies. J Clin Endocrinol Metab. 2012;97(7):2243–5558.

    CAS  PubMed  Google Scholar 

  84. 84.

    Kurtaran A, Schmoll-Hauer B, Tugendsam C. Current controversies in risk-adapted therapy in differentiated thyroid cancer: Is less (therapy) really more? Wien Med Wochenschr. 2020;170(1–2):15–25.

    PubMed  Google Scholar 

  85. 85.

    Haymart MR, Esfandiari NH, Stang MT, et al. Controversies in the management of low-risk differentiated thyroid cancer. Endocr Rev. 2017;38(4):351–78.

    PubMed  PubMed Central  Google Scholar 

  86. 86.

    Haugen BR, Alexander EK, Bible KC, et al. American Thyroid Association guidelines for adult patients with thyroid nodules and differentiated thyroid cancer. Thyroid. 2016;26:1–133.

    PubMed  PubMed Central  Google Scholar 

  87. 87.

    Silverman JF, West RL, Larkin EW, et al. The role of fine-needle aspiration biopsy in the rapid diagnosis and management of thyroid neoplasm. Cancer. 1986;57(6):1164–70.

    CAS  PubMed  Google Scholar 

  88. 88.

    Kwak JY, Han KH, Yoon JH, et al. Thyroid imaging reporting and data system for US features of nodules: a step in establishing better stratification of cancer risk. Radiology. 2011;260:892–9.

    PubMed  Google Scholar 

  89. 89.

    Tugendsam C, Petz V, Buchinger W, et al. Ultrasound criteria for risk stratification of thyroid nodules in the previously iodine deficient area of Austria—a single centre, retrospective analysis. Thyroid Res. 2018;9(11):3.

    Google Scholar 

  90. 90.

    Belfiore A, La Rosa GL, La Porta GA, et al. Cancer risk in patients with cold thyroid nodules: relevance of iodine intake, sex, age, and multinodularity. Am J Med. 1992;93(4):363–9.

    CAS  PubMed  Google Scholar 

  91. 91.

    Crockett JC. The thyroid nodule: fine-needle aspiration biopsy technique. Thrombosis J. 2017;15:14.

    Google Scholar 

  92. 92.

    Knobel M. Which is the ideal treatment for benign diffuse and multinodular non-toxic goiters? Front Endocrinol (Lausanne). 2016;7:48.

    Google Scholar 

  93. 93.

    Bartsch DK, Luster M, Buhr HJ. Indications for the surgical management of benign goiter in adults. Dtsch Arztebl Int. 2018;115:1–7.

    PubMed  Google Scholar 

  94. 94.

    Mostbeck A, Galvan G, Bauer P, et al. The incidence of hyperthyroidism in Austria from 1987 to 1995 before and after an increase in salt iodization in 1990. Eur J Nucl Med. 1998;25(4):367–74.

    CAS  PubMed  Google Scholar 

  95. 95.

    Testini M, Gurrado A, Avenia N, et al. Does mediastinal extension of the goiter increase morbidity of total thyroidectomy? A multicenter study of 19,662 patients. Ann Surg Oncol. 2011;18(8):2251–9.

    PubMed  Google Scholar 

  96. 96.

    Ito Y, Miyauchi A, Kihara M, et al. Patient age is significantly related to the progression of papillary microcarcinoma of the thyroid under observation. Thyroid. 2014;24(1):27–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. 97.

    Joseph KR, Edirimanne S, Eslick GD. Thyroidectomy for thyroid cancer in the elderly: a meta-analysis. Eur J Surg Oncol. 2019;45(3):310–7.

    PubMed  Google Scholar 

  98. 98.

    Duskin-Bitan H, Leibner A, Amitai O. Bone-marrow suppression in elderly patients following empiric radioiodine therapy: real-life data. Thyroid. 2019;29(5):683–91.

    CAS  PubMed  Google Scholar 

  99. 99.

    Chereau N, Trésallet C, Noullet S, et al. Prognosis of papillary thyroid carcinoma in elderly patients after thyroid resection: a retrospective cohort analysis. Medicine. 2016;95(47):e5450.

    PubMed  PubMed Central  Google Scholar 

  100. 100.

    Biondi B, Cooper DS. Benefits of thyrotropin suppression versus the risks of adverse effects in differentiated thyroid cancer. Thyroid. 2010;20(2):135–46.

    CAS  PubMed  Google Scholar 

  101. 101.

    Molinaro E, Romei C, Biagini A. Anaplastic thyroid carcinoma: from clinicopathology to genetics and advanced therapies. Nat Rev Endocrinol. 2017;13:644–60.

    CAS  PubMed  Google Scholar 

  102. 102.

    Statistik Austria. Schilddrüse. 2020. http://www.statistik.at/web_de/statistiken/menschen_und_gesellschaft/gesundheit/krebserkrankungen/schilddruese/index.html. Zugriffen: 20.4.2020

  103. 103.

    Bakiri F, Djemli FK, Mokrane LA, et al. The relative roles of endemic goiter and socioeconomic development status in the prognosis of thyroid carcinoma. Cancer. 1998;82(6):1146–53.

    CAS  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Christina Tugendsam.

Ethics declarations

Interessenkonflikt

C. Tugendsam und A. Kurtaran geben an, dass kein Interessenkonflikt besteht.

Additional information

Hinweis des Verlags

Der Verlag bleibt in Hinblick auf geografische Zuordnungen und Gebietsbezeichnungen in veröffentlichten Karten und Institutsadressen neutral.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tugendsam, C., Kurtaran, A. Die Schilddrüse im Alter. Wien Med Wochenschr (2020). https://doi.org/10.1007/s10354-020-00761-2

Download citation

Schlüsselwörter

  • Hypothyreose
  • Hyperthyreose
  • Schilddrüsenkarzinom
  • Struma
  • Physiologie

Keywords

  • Hypothyroidism
  • hyperthyroidism
  • thyroid carcinoma
  • goitre
  • physiology