Facies and fossil associations in Ladinian carbonate olistoliths at Dole pri Litiji, Slovenia

Abstract

The Ladinian Pseudozilian formation in the central part of the Sava Folds, Slovenia, was deposited in a deeper marine basin situated among the carbonate platforms lining the western margin of the Neotethys. The formation consists of shale and sandstone, hemipelagic limestone, volcanics, and volcanoclastics. At Dole pri Litiji, tuffaceous sandstone contains metre-scale olistoliths dominated by microbialites, solenoporacean algae, sponges, microproblematica and, to a minor extent, corals. Six types of fossil reef associations were recognized based on different proportions of these components. The presence of Ladinella porata Ott, dasycladaceans, and solenoporacean algae suggests the olistoliths originate from within the photic zone, perhaps the platform margin or the upper slope. Similar or even identical associations can be found in other Anisian to early Carnian reefs, suggesting the perseverance of reef associations that established themselves during the Middle Triassic recovery. Rather than replacing the older associations, new associations were added through time. The Anisian–early Carnian reef associations thus probably remained present even after the Late Triassic rise of scleractinian corals to dominance.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9 
Fig. 10
Fig. 11

References

  1. Brandner R, Flügel E, Senowbari-Daryan B (1991) Microfacies of carbonate slope boulders: indicator of the source area (Middle Triassic: Mahlknecht Cliff, Western Dolomites). Facies 25:279–296

    Google Scholar 

  2. Buser S (1978) Basic geological map SFRY. Scale 1:100.000. Sheet Celje, L 33-67. Federal Geological Survey, Beograd

    Google Scholar 

  3. Buser S (1979) Explanatory book to Basic Geological Map SFRY. Sheet Celje, L 33-67. Federal Geological Survey, Beograd

    Google Scholar 

  4. Buser S, Ramovš A, Turnšek D (1982) Triassic reefs in Slovenia. Facies 6:15–24

    Google Scholar 

  5. Dimitrijević MN, Dimitrijević MD (1991) Triassic carbonate platform of the Drina–Ivanjica element (Dinarides). Acta Geol Hung 34:15–44

    Google Scholar 

  6. Dullo W-C, Lein R (1982) Facies and environment of the Leckkogel Beds (Carnian; Alps). Facies 6:25–36

    Google Scholar 

  7. Dunham RJ (1962) Classification of carbonate rocks according to depositional texture. In: Han WE (ed) Classification of carbonate rocks, a symposium. AAPG Memoir, pp 108–121

  8. Embry AF, Klovan JE (1971) A late Devonian reef tract on northeastern Banks Island. NWT Bull Can Petrol Geol 19:730–781

    Google Scholar 

  9. Emmerich A, Zamparelli V, Bechstädt T, Zühlke R (2005) The reefal margin and slope of a Middle Triassic carbonate platform: the Latemar (Dolomites, Italy). Facies 50:573–614

    Google Scholar 

  10. Enos P, Jiayong W, Yangji Y (1997) Facies distribution and retreat of Middle Triassic platform margin, Guizhou province, south China. Sedimentology 44:563–584

    Google Scholar 

  11. Flügel E (1981) Paleoecology and facies of Upper Triassic reefs in the Northern Calcareous Alps. SEPM Spec Publ 30:291–359

    Google Scholar 

  12. Flügel E (1982) Evolution of Triassic reefs: current concepts and problems. Facies 6:297–328

    Google Scholar 

  13. Flügel E (2002) Triassic reef patterns. In: Kiessling W, Flügel E, Golonka J (eds) Phanerozoic reef patterns, vol 72. SEMP Special Publications, Tulsa, pp 391–463

    Google Scholar 

  14. Flügel E (2004) Microfacies of carbonate rocks: analysis, interpretation and application. Springer, Berlin

    Google Scholar 

  15. Flügel E, Stanley GD Jr (1984) Reorganization, development and evolution of post-Permian reefs and reef organisms. Palaeontogr Am 54:177–186

    Google Scholar 

  16. Fois E, Gaetani M (1984) The recovery of reef-building communities and the role of cnidarians in carbonate sequences of the Middle Triassic (Anisian) in the Italian Dolomites. Paleontogr Am 54:191–200

    Google Scholar 

  17. Fürsich FT, Wendt J (1977) Biostratinomy and palaeoecology of the Cassian Formation (Triassic) of the Southern Alps. Palaeogeogr Palaeoclimatol Palaeoecol 22:257–323

    Google Scholar 

  18. Gaetani M, Fois E, Jadoul F, Nicora A (1981) Nature and evolution of Middle Triassic carbonate buildups in the Dolomites (Italy). Marine Geol 44:25–57

    Google Scholar 

  19. Gale L, Skaberne D, Paybernes C, Martini R, Čar J, Rožič B (2016) Carnian reefal blocks in the Slovenian Basin, eastern Southern Alps. Facies 62:23

    Google Scholar 

  20. Gale L, Peybernes C, Celarc B, Hočevar M, Šelih VS, Martini R (2018) Biotic composition and microfacies distribution of Upper Triassic build-ups: new insights from the lower Carnian limestone of Lesno Brdo, Central Slovenia. Facies 64:17

    Google Scholar 

  21. Grad K (1969) Pseudo-Zilian beds between Celje and Vransko. Geologija 12:91–105

    Google Scholar 

  22. Harris MT (1993) Reef fabrics, biotic crusts and syndepositional cements of the Latemar reef margin (Middle Triassic), northern Italy. Sedimentology 40:383–401

    Google Scholar 

  23. Henrich R (1982) Middle Triassic carbonate margin development: Hochstaufen-Zwieselmassif, Northern Calcareous Alps, Germany. Facies 6:85–106

    Google Scholar 

  24. Jurkovšek B (1983) Fassanian beds with daonellas in Slovenia. Geologija 26:29–70

    Google Scholar 

  25. Kelley BM, Lehrmann DJ, Yu M, Minzoni M, Enos P, Li X, Lau KV, Payne JL (2017) The Late Permian to Late Triassic Great Bank of Guizhou: An isolated carbonate platform in the Nanpanjiang Basin of Guizhou Province, China. AAPG Bull 101:553–562

    Google Scholar 

  26. Kiessling W (2001) Phanerozoic reef trends based on the Paleoreefs database. In: Stanley GD (ed) The history and sedimentology of ancient reef systems. Plenum Press, New York, pp 41–88

    Google Scholar 

  27. Kiessling W (2009) Geologic and biologic control on the evolution of reefs. Annu Rev Ecol Evol Syst 40:173–192

    Google Scholar 

  28. Kiessling W (2010) Reef expansion during the Triassic: spread of photosymbiosis balancing climatic cooling. Palaeogeogr Palaeoclimatol Palaeoecol 290:11–19

    Google Scholar 

  29. Kolar-Jurkovšek T (1991) Microfauna of Middle and Upper Triassic in Slovenia and its biostratigraphic significance. Geologija 33:21–170

    Google Scholar 

  30. Kolar-Jurkovšek T, Jurkovšek B (2019) Conodonts of Slovenia. Geological Survey of Slovenia, Ljubljana

    Google Scholar 

  31. Kolar-Jurkovšek T, Placer L (1990) O starosti psevdoziljskih skladov v vzhodnih Posavskih gubah. Min Metal Q 37:529–534

    Google Scholar 

  32. Lehrmann DJ, Enos P, Payne JL, Montgomery P, Wei J, Yu Y, Xiao J, Orchard MJ (2005) Permian and Triassic depositional history of the Yangtze platform and Great Bank of Guizhou in the Nanpanjiang basin of Guizhou and Guangxi, south China. Albertiana 33:149–168

    Google Scholar 

  33. Levinton JS (1995) Marine biology: function, biodiversity, ecology. Oxford University Press, New York

    Google Scholar 

  34. Marangon A, Gattolin G, Della Porta G, Preto N (2011) The Latemar: a flat-topped, steep fronted platform dominated by microbialites and synsedimentary cements. Sed Geol 240:97–114

    Google Scholar 

  35. Martindale RC, Zonneweld J-P, Bottjer DJ (2010) Microbial framework in Upper Triassic (Carnian) patch reefs from Williston Lake, British Columbia, Canada. Palaeogeogr Palaeoclimatol Palaeoecol 297:609–620

    Google Scholar 

  36. Martindale RC, Krystyn L, Corsetti FA, Bottjer DJ (2013) From fore reef to lagoon: evolution of the Upper Triassic Dachstein carbonate platform on the Tennengebirge (Salzburg, Austria). Palaios 28:755–770

    Google Scholar 

  37. Martindale RC, Foster WJ, Velledits F (2017) The survival, recovery, and diversification of metazoan reef ecosystems following the end-Permian mass extinction event. Palaeogeogr Palaeoclimatol Palaeoecol 513:100–115

    Google Scholar 

  38. Mircescu CV, Bucur II, Ghionea S, Popa GL (2019) Facies associations and microfossils from the Middle-Upper Triassic limestones of the Transilvanian Nappes (Perşani Mountains, Eastern Carpathians, Romania). Acta Palaeont Romaniae 15:29–39

    Google Scholar 

  39. Missoni S, Gawlick H-J, Sudar MN, Jovanović D, Lein R (2012) Onset and demise of the Wetterstein Carbonate Platform in the mélange areas of the Zlatibor Mountain (Sirogojno, SW Serbia). Facies 58:95–111

    Google Scholar 

  40. Peybernes C, Chablais J, Martini R (2015) Upper Triassic (Ladinian?-Carnian) reef biota from the Sambosan Accretionary Complex, Shikoku, Japan. Facies 61:20. https://doi.org/10.1007/s10347-015-0446-4

    Article  Google Scholar 

  41. Peybernes C, Chablais J, Onoue T, Escarguel G, Martini R (2016) Paleoecology, biogeography, and evolution of reef ecosystems in the Panthalassa Ocean during the Triassic: Insights from reef limestone of the Sambosan Accretionary Complex, Shikoku, Japan. Palaeogeogr Palaeoclimatol Palaeoecol 457:31–51

    Google Scholar 

  42. Placer L (1999a) Contribution to the macrotectonic subdivision of the border region between Southern Alps and External Dinarides. Geologija 41:223–255

    Google Scholar 

  43. Placer L (1999b) Structural meaning of the Sava folds. Geologija 41:191–221

    Google Scholar 

  44. Rakovec I (1950) O nastanku in pomenu psevdoziljskih skladov. Geogr Bull 22:191–214

    Google Scholar 

  45. Ramovš A (1997) Solenopora ladinica n. sp. und Solenopora suhadolica n. sp. (Rotalgen) und Paragondolella ?trammeri (Kozur, 1972) (Conodonta) aus dem Ladin (Mitteltrias) bei Suhadole, östlich von Ljubljana, Slowenien. Geologija 39:79–90

    Google Scholar 

  46. Riding R (2000) Microbial carbonates: the geological record of calcified bacterial-algal mats and biofilms. Sedimentology 47:179–204

    Google Scholar 

  47. Russo F (2005) Biofacies evolution of the Triassic platforms of the Dolomites, Italy. Ann Univ Studi Ferrara Museol Sci Natur Vol Spec 2005:33–44

    Google Scholar 

  48. Sánchez-Beristain F, Reitner J (2012) Paleoecology of microencrusters and encrusting “coralline” sponges in Cipit boulders from the Cassian formation (upper Ladinian-lower Carnian, Dolomites, Northern Italy). Paläontol Z 86:113–133

    Google Scholar 

  49. Sánchez-Beristain F, Reitner J (2016) Palaeoecology of new fossil associations from the Cipit boulders, St. Cassian Formation (Ladinian-Carnian, Middle-Upper Triassic; Dolomites, NE Italy). Paläontol Z 90:243–269

    Google Scholar 

  50. Sánchez-Beristain F, Reitner J (2018) Four new fossil associations identified in the Cipit boulders from the St. Cassian Formation (Ladinian-Carnian; Dolomites, NE Italy). Paläontol Z 92:535–556. https://doi.org/10.1007/s12542-017-0391-3

    Article  Google Scholar 

  51. Sánchez-Beristain F, Reitner J (2019a) Microbialite-dominated fossil associations in Cipit Boulders from Alpe di Specie and Misurina (St. Cassian Formation, Middle to Upper Triassic, Dolomites, NE Italy). Rev Esp Ciencias Quím Biol 22:1–18

    Google Scholar 

  52. Sánchez-Beristain F, Reitner J (2019b) Numerical analysis of selected microencrusters from the Cipit boulders of the St Cassian Formation (Dolomites, NE Italy): palaeoecological implications. Lethaia 52:287–295

    Google Scholar 

  53. Schlager W (2003) Benthic carbonate factories of the Phanerozoic. Int J Earth Sci (Geol Rundsch) 92:445–464

    Google Scholar 

  54. Schlagintweit F, Bover-Arnal T (2012) Remarks on Bačinella Radoičić, 1959 (type species D. irregularis) and its representatives. Facies 59:59–73

    Google Scholar 

  55. Senowbari-Daryan B (2013) Tubiphytes Maslov, 1956 and description of similar organisms from Triassic reefs of the Tethys. Facies 59:75–112

    Google Scholar 

  56. Senowbari-Daryan B, Zühlke R, Bechstädt T, Flügel E (1993) Anisian (Middle Triassic) buildups of the northern Dolomites (Italy): the recovery of reef communities after the Permian/Triassic crisis. Facies 28:181–256

    Google Scholar 

  57. Senowbari-Daryan B, StanleyJr GD, Onoue T (2012) Upper Triassic (Carnian) reef biota from the Sambosan Accretionary Complex, Kyushu, Japan. Facies 58:671–684. https://doi.org/10.1007/s10347-012-0305-5

    Article  Google Scholar 

  58. Stanley GD Jr (1988) The history of Early Mesozoic reef communities: a three-step process. Palaios 3:170–183

    Google Scholar 

  59. Stanley GD Jr (2001) Introduction to reef ecosystems and their evolution. In: Stanley GD (ed) The history and sedimentology of ancient reef systems. Topics Geobiology 17:1–39

  60. Teller F (1889) Daonella lommeli in the Pseudo-Gailthalerschieferen von Cilli. Verh Geol RA 1:210–211

    Google Scholar 

  61. Tomljenović B, Csontos L (2001) Neogene-Quaternary structures in the border zone between Alps, Dinarides and Pannonian Basin (Hrvatsko Zagorje and Karlovac Basins, Croatia). Int J Earth Sci 90:560–578

    Google Scholar 

  62. Tosti F, Guiso A, Demasi F, Mastandrea A, Naccarato A, Tagarelli A, Russo F (2011) Microbialites as primary builders of the Ladinian–Carnian platforms in the Dolomites: biogeochemical characterization. Geo Alp 8:156–162

    Google Scholar 

  63. Trombetta GL (2011) Facies analysis, geometry and architecture of a Carnian carbonate platform: the Settsass/Richthofen reef system (Dolomites, Southern Alps, northern Italy). Geo Alp 8:56–75

    Google Scholar 

  64. Turnšek D (1997) Mesozoic corals of Slovenia. Research Center of Slovenian Academy of Sciences and Arts, Ljubljana

    Google Scholar 

  65. Velledits F (2008) Evolution of the Triassic reef communities. In: Galácz A (ed.): 125th Anniversary of the Department of Palaeontology at Budapest University. Hantkeniana, Jub, vol 6, pp 9–16

  66. Velledits F, Péró C, Blau J, Senowbari-Daryan B, Kovács S, Piros O, Pocsai T, Szügyi-Simon H, Dumitrica P, Palfy J (2011) The oldest Triassic platform margin reef from the Alpine-Carpathian region (Aggtelek, NE Hungary): platform evolution, reefal biota and biostratigraphic framework. Riv It Paleont Strat 117:221–268

    Google Scholar 

  67. Vlahović I, Tišljar J, Velić I, Matičec D (2005) Evolution of the Adriatic Carbonate Platform: palaeogeography, main events and depositional dynamics. Palaeogeogr Palaeoclimatol Palaeoecol 220:333–360

    Google Scholar 

  68. Vrabec M, Fodor L (2006) Late Cenozoic tectonics of Slovenia: structural styles at the northeastern corner of the Adriatic microplate. In: Pinter N, Grenerczy G, Weber J, Stein S, Medek D (eds) The Adria microplate: GPS geodesy, tectonics and hazards. NATO Sci Ser IV Earth Environ Sci 61:151–168

  69. Wendt J (1982) The Cassian patch reefs (lower Carnian, Southern Alps). Facies 6:185–202

    Google Scholar 

  70. Wendt J (1993) Solenoporacean stromatolites. Palaios 8:101–110

    Google Scholar 

  71. Wendt J (2001) Upper Triassic (Carnian) mud mounds from northern Sichuan (China). Acta Geol Pol 51:1–13

    Google Scholar 

  72. Wood R (1998) The ecological evolution of reefs. Annu Rev Ecol Syst 29:179–206

    Google Scholar 

Download references

Acknowledgements

The study was financially supported by the Slovenian Research Agency (Programme no. P1-0011). We thank Goce Mitrevski who provided valuable information related to the situation in the field. We are grateful to reviewers Francisco Sánchez-Beristain and Michael Link for their thorough check and constructive remarks.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Luka Gale.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gale, L., Peybernes, C., Mavrič, T. et al. Facies and fossil associations in Ladinian carbonate olistoliths at Dole pri Litiji, Slovenia. Facies 66, 18 (2020). https://doi.org/10.1007/s10347-020-00601-0

Download citation

Keywords

  • Dinarides
  • Sava folds
  • Middle Triassic
  • Reef
  • Association
  • Pseudozilian formation