Skip to main content

Advertisement

Log in

The lower Upper Cretaceous of the south-eastern Münsterland Cretaceous Basin, Germany: facies, integrated stratigraphy and inter-basinal correlation

  • Original Article
  • Published:
Facies Aims and scope Submit manuscript

Abstract

Integrated stratigraphic (litho-, bio-, event, chemo-, gamma ray, and sequence stratigraphy) and sedimentologic analyses of two new core sections greatly improved the understanding of facies development, sea-level changes and correlation of the lower Upper Cretaceous in the south-eastern Münsterland Cretaceous Basin, Germany. A large-scale second-order sea-level cycle is mirrored by the increasing importance of offshore facies and thicknesses of depositional sequences, reflecting the rise of accommodation during the Cenomanian to Early Turonian. In the Middle Turonian, this trend started to become reversed and the cycle ends with a major unconformity at the base of the Soest Grünsand Member in the mid-Upper Turonian. Condensation of the mid- and uppermost Turonian reflects the lack of accommodation during a phase of second-order lowstand, followed by a retrogradational trend during the Early Coniacian that marks the transgressive part of a new second-order cycle. Sedimentary unconformities in the Cenomanian–Turonian successions provide evidence for third-order sea-level changes superimposed onto the first early Late Cretaceous second-order cycle. They correspond to sequence boundaries SB Ce 1–5 and SB Tu 1–4 that have been identified in Central European basins and elsewhere, supporting their eustatic origin. The sea-level fall expressed by Upper Turonian unconformity SB Tu 4 is of major magnitude. The overlying Soest Grünsand Member is the only level of greensands in the Upper Turonian of the south-eastern Münsterland: the Alme Grünsand, introduced for another, allegedly uppermost Turonian greensand level, does not exist. Carbon stable isotopes from the mid-Upper Cenomanian to Lower Coniacian allowed calibrating the successions on intra- and interbasinal scales. A conspicuous mid-Middle Turonian positive isotope event has been newly named, i.e., the Niederntudorf Event. Sequence boundaries, marker beds (marl layers) and bentonites turned out to be isochronous within the chemostratigraphic framework. The identification of Turonian bentonites greatly improved the understanding of the stratigraphic relationships, especially in the Upper Turonian while natural gamma radiation logs turned out as a valuable method for intrabasinal correlation. In conclusion, the new sections provide a high-quality standard succession for the lower Upper Cretaceous in the south-eastern Münsterland Cretaceous Basin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Baccelle L, Bosellini A (1965) Diagrammi per la stima visiva: della composizione percentuale nelle rocce sedimentarie, vol 1. Univ. degli studi, Ferrara

    Google Scholar 

  • Baldschuhn R, Best G, Kockel F (1991) Inversion tectonics in the north-west German basin. Generation, accumulation and production of Europe’s hydrocarbons. Spec Publ Europ Assoc Petrol Geosci 1:149–159

    Google Scholar 

  • Bärtling R (1920) Transgressionen, Regressionen und Faziesverteilung in der Mittleren und Oberen Kreide des Beckens von Münster. Z Dt Geol Ges 72:161–217

    Google Scholar 

  • Berensmeier M, Dölling B, Linnert C, Wilmsen M (2018a) Stratigraphical dissection of proximal shallow-water deposits: integrated analysis of the Cenomanian–Coniacian in the southwestern Münsterland Cretaceous Basin (northwest Germany). Zeitschrift der deutschen Gesellschaft für Geowissenschaften; Stuttgart. https://doi.org/10.1127/zdgg/2018/0174

    Article  Google Scholar 

  • Berensmeier M, Dölling B, Frijia G, Wilmsen M (2018b) Facies analysis of proximal upper Cretaceous deposits in the southwestern Münsterland Cretaceous Basin (northwest Germany). Cretac Res 87:241–260

    Article  Google Scholar 

  • Boulila S, Galbrun B, Miller KG, Pekar SF, Browning JV, Laskar J, Wright JD (2011) On the origin of Cenozoic and Mesozoic “third-order” eustatic sequences. Earth Sci Rev 109:94–112

    Article  Google Scholar 

  • Burnett JA (1998) Upper Cretaceous. In: Bown PR (ed) Calcareous nannofossil biostratigraphy. Chapman Hall, London, pp 132–199

    Chapter  Google Scholar 

  • Catuneanu O (2006) Principles of sequence stratigraphy. Elsevier, Amsterdam

    Google Scholar 

  • Catuneanu O, Galloway WE, Kendall CGSC, Miall AD, Posamentier HW, Strasser A, Tucker ME (2011) Sequence stratigraphy: methodology and nomenclature. Newsl Stratigr 44:173–245

    Article  Google Scholar 

  • Christie-Blick N (1991) Onlap, offlap, and the origin of unconformity-bounded depositional sequences. Mar Geol 97:35–56

    Article  Google Scholar 

  • Dölling B, Dölling M, Hiss M (2014) The Upper Cretaceous sedimentary rocks of the southern Münsterland (northwest Germany) revisited–new correlations of borehole lithostratigraphical, biostratigraphical and natural gamma radiation (GR) log data. Z Dt Ges Geowiss 165:521–545

    Google Scholar 

  • Dölling B, Dölling M, Hiss M, Berensmeier M, Püttmann T (2018) Upper Cretaceous shallow-marine deposits of the southwestern Münsterland (northwest Germany) influenced by synsedimentary tectonics. Cretac Res 87:261–276

    Article  Google Scholar 

  • Dorn P, Bräutigam F (1959) Hinweise auf Oberkreidevulkanismus in NW-Deutschland. Abh Braunschweiger Wiss Ges 11:1–4

    Google Scholar 

  • Ernst G, Schmid F, Seibertz E (1983) Event-Stratigraphie im Cenoman und Turon von NW-Deutschland. Zitteliana 10:531–554

    Google Scholar 

  • Floyd PA, Winchester JA (1978) Identification and discrimination of altered and metamorphosed volcanic rocks using immobile elements. Chem Geol 21:291–306

    Article  Google Scholar 

  • Funk H (1971) Zur Stratigraphie und Lithologie des Helvetischen Kieselkalkes und der Altmannschichten in der Santis- Churfirsten-Gruppe (Nordostschweiz). Eclogae Geol Helv 64:345–433

    Google Scholar 

  • Gale AS (1990) A Milankovitch scale for Cenomanian time. Terra Nova 1:420–425

    Article  Google Scholar 

  • Gale AS (1995) Cyclostratigraphy and correlation of the Cenomanian stage in Western Europe. In: House MR, Gale AS (eds) Orbital forcing timescales and cyclostratigraphy, vol 85. Geological Society London Special Publications, pp 177–197

  • Gale AS (1996) Turonian correlation and sequence stratigraphy of the Chalk in southern England. In: Hesselbo SP, Parkinson DN (eds) Sequence stratigraphy in British Geology. vol 103. Geological Society London Special Publications, pp 177–195

  • Gale AS, Jenkyns HC, Kennedy WJ, Corfield RM (1993) Chemostratigraphy versus biostratigraphy: data from around the Cenomanian–Turonian boundary. J Geol Soc London 150:29–32

    Article  Google Scholar 

  • Gale AS, Hardenbol J, Hathway B, Kennedy WJ, Young JR, Phansalkar V (2002) Global correlation of Cenomanian (upper Cretaceous) sequences: evidence for Milankovitch control of sea level. Geology 30:291–294

    Article  Google Scholar 

  • Gale AS, Voigt S, Sageman BB, Kennedy WJ (2008) Eustatic sea-level record for the Cenomanian (Late Cretaceous)—extension to the Western Interior Basin, USA. Geology 36:859–862

    Article  Google Scholar 

  • Geologisches Landesamt Nordrhein-Westfalen (1995) Geologie im Münsterland. GD NRW, Krefeld

  • Haq BU (2014) Cretaceous eustasy revisited. Glob Planet Change 113:44–58

    Article  Google Scholar 

  • Hilbrecht H, Dahmer DD (1991) Inoceramen aus den Schwarzschiefern des basalen Unterturon (Oberkreide) von Helgoland und Misburg. Geol Jb A 120:245–269

    Google Scholar 

  • Hiss M (1982) Neue Ergebnisse zur Paläogeographie des Cenomans in Westfalen. N Jb Geol Paläont Monatsh 1982:533–546

    Google Scholar 

  • Hiss M, Mutterlose J, Niebuhr B, Schwerd K (2005) Die Kreide in der Stratigraphischen Tabelle von Deutschland 2002. Newsl Stratigr 41:287–306

    Article  Google Scholar 

  • Janetschke N, Niebuhr B, Wilmsen M (2015) Inter-regional sequence-stratigraphical synthesis of the Plänerkalk, Elbtal and Danubian Cretaceous groups (Germany): Cenomanian–Turonian correlations around the Mid-European Island. Cretac Res 56:530–549

    Article  Google Scholar 

  • Jarvis I, Gale AS, Jenkyns HC, Pearce MA (2006) Secular variation in Late Cretaceous carbon isotopes: a new δ13C carbonate reference curve for the Cenomanian-Campanian (99.6–70.6 Ma). Geol Mag 143:561–608

    Article  Google Scholar 

  • Jarvis I, Trabucho-Alexandre J, Gröcke D, Uličný D, Laurin J (2015) Intercontinental correlation of organic carbon and carbonate stable isotope records: evidence of climate and sea-level change during the Turonian (Cretaceous). Depos Rec 1:53–90

    Article  Google Scholar 

  • Jeffries RPS (1963) The stratigraphy of the Actinocamax plenus subzone (Turonian) in the Anglo-Paris Basin. Proc Geol Assoc 74:1–33

    Article  Google Scholar 

  • Kaplan U (1994) Zur Stratigraphie und Korrelation des Soester Grünsandes, Ober-Turon, Westfalen. Ber Naturwiss Verein Bielefeld Umgeb 35:59–78

    Google Scholar 

  • Kaplan U (2015) Oerlinghausen- und Salder-Formation (Mittel- und Oberturonium, Oberkreide) der Paderborner Hochfläche und des Haarstrangs zwischen Borchen und Anröchte (Südöstliches Münsterländer Kreidebecken). Geol Paläont Westfalen 87:5–73

    Google Scholar 

  • Kennedy WJ (1984) Ammonite faunas and the “standard zones” of the Cenomanian to Maastrichtian Stages in their type areas, with some proposals for the definition of the stage boundaries by ammonites. Bull geol Soc Den 33:147–161

    Google Scholar 

  • Kley J, Voigt T (2008) Late Cretaceous intraplate thrusting in central Europe: effect of Africa–Iberia–Europe convergence, not Alpine collision. Geology 36:839–842

    Article  Google Scholar 

  • Laurin J, Čech S, Uličný D, Štaffen Z, Svobodová M (2014) Astrochronology of the Late Turonian: implications for the behavior of the carbon cycle at the demise of peak greenhouse. Earth Planet Sci Lett 394:254–269

    Article  Google Scholar 

  • Lorch S (1985) Korrektur von Bohrlocheinflüssen bei der Messung der natürlichen Gammastrahlung in einer Bohrung. Geol Jb E 32:3–36

    Google Scholar 

  • MacLeod KG, Hoppe KA (1992) Evidence that inoceramid bivalves were benthic and harboured chemosynthetic symbionts. Geology 20:117–120

    Article  Google Scholar 

  • Mitchell SF, Paul CRC, Gale AS (1996) Carbon isotopes and sequence stratigraphy. In: Howell JA, Aitken JF (eds) High resolution sequence stratigraphy: Innovations and applications, vol 104. Geological Society London Special Publications, pp 11–24

  • Niebuhr B, Hiss M, Kaplan U, Tröger KA, Voigt S, Voigt T, Wiese F, Wilmsen M (2007) Lithostratigraphie der norddeutschen Oberkreide. SDGG 55:1–136

    Google Scholar 

  • Niebuhr B, Wilmsen M, Chellouche P, Richardt N, Pürner T (2011) Stratigraphy and facies of the Turonian (Upper Cretaceous) Roding Formation at the southwestern margin of the Bohemian Massif (southern Germany, Bavaria). Z Dt Ges Geowiss 162:295–316

    Google Scholar 

  • Niebuhr B, Wilmsen M, Janetschke N (2014) Cenomanian–Turonian sequence stratigraphy and facies development of the Danubian Cretaceous Group (Bavaria, southern Germany). Z Dt Ges Geowiss 165:621–640

    Google Scholar 

  • Ogg JG, Hinnov LA (2012) Cretaceous. In: Gradstein FM, Ogg JG, Schmitz M, Ogg GM (eds) The geologic time scale 2012, vol 2. Elsevier, Amsterdam, pp 793–853

    Chapter  Google Scholar 

  • Paul CRC, Lamolda MA, Mitchell SF, Vaziri MR, Gorostidi A, Marshall JD (1999) The Cenomanian–Turonian boundary at Eastbourne (Sussex, UK): a proposed European reference section. Palaeogeogr Palaeoclim Palaeoecol 150:83–121

    Article  Google Scholar 

  • Posamentier HW, Jervey MT, Vail PR (1988) Eustatic controls on clastic deposition I—conceptual framework. Soc Econ Palaeont Mineral Spec Publ 42:109–124

    Google Scholar 

  • Richardt N, Wilmsen M (2012) Lower Upper Cretaceous standard section of the southern Münsterland (NW-Germany): carbon stable isotopes and sequence stratigraphy. Newsl Stratigr 45:1–24

    Article  Google Scholar 

  • Richardt N, Wilmsen M, Niebuhr B (2013) Late Cenomanian-Early Turonian facies development and sea-level changes in the Bodenwöhrer Senke (Danubian Cretaceous Group, Bavaria, Germany). Facies 59:803–827

    Article  Google Scholar 

  • Robaszynski F, Juignet P, Gale AS, Amédro F, Hardenbol J (1998) Sequence stratigraphy in the Cretaceous of the Anglo-Paris Basin, exemplified by the Cenomanian stage. In: Jaquin T, de Graciansky P, Hardenbol J (eds) Mesozoic and Cenozoic sequence stratigraphy of European basins, vol 60. Society of Economic Paleontologists and Mineralogists Special Publication, Tulsa, pp 363–385

    Google Scholar 

  • Roemer FA (1841) Die Versteinerungen des norddeutschen Kreidegebirges. Hahn, Hannover

    Google Scholar 

  • Schlanger SO, Jenkyns HC (1976) Cretaceous oceanic anoxic events: causes and consequences. Geol Mijnb 55:179–184

    Google Scholar 

  • Schlanger SO, Arthur MA, Jenkyns HC, Scholle PA (1987) The Cenomanian–Turonian Oceanic Anoxic Event. Stratigraphy and distribution of organic carbon-rich beds and the marine 13C-excursion. In: Brooks J, Fleet AJ (eds) Marine Petroleum Source Rocks, vol 26. Geological Society London Special Publications, pp 371–399

  • Seibertz E (1977) Litho-, Bio-, Ökostratigraphie, Sedimentologie und Tektonik im Soester Grünsand. Geol Jb A 40:61–113

    Google Scholar 

  • Sharland PR, Archer R, Casey DM, Davies RB, Hall SH, Heward AP, Horbury AD, Simmons MD (2001) Arabian Plate sequence stratigraphy. Geoarabia Spec Publ 2:1–371

    Google Scholar 

  • Simmons MD (2012) Sequence stratigraphy and sea-level change. In: Gradstein FM, Ogg JG, Schmitz M, Ogg GM (eds) The geologic time scale 2012, vol 1. Elsevier, Amsterdam, pp 239–267

    Chapter  Google Scholar 

  • Stoll HM, Schrag DP (2000) High-resolution stable isotope records from the Upper Cretaceous rocks of Italy and Spain: glacial episodes in a greenhouse planet? GSA Bull 112:308–319

    Article  Google Scholar 

  • Uličný D, Jarvis I, Gröcke DR, Čech S, Laurin J, Olde K, Trabucho-Alexandre J, Švábenická L, Pendentchouk N (2014) A high-resolution carbon-isotope record of the Turonian stage correlated to a siliciclastic basin fill: implications for mid-Cretaceous sea-level change. Palaeogeogr Palaeoclim Palaeoecol 405:42–58

    Article  Google Scholar 

  • Vejbæk OV, Andersen C, Dusa M, Herngreen W, Krabbe H, Leszczynski K, Lott GK, Mutterlose J, van der Molen AS (2010) Cretaceous. In: Doornenbal H, Stevenson A (eds) Petroleum Geological Atlas of the Southern Permian Basin Area. EAGE Publ, Houten, pp 195–209

    Google Scholar 

  • Voigt E (1962) Frühdiagenetische Deformation der turonen Plänerkalke bei Halle/Westf. als Folge einer Großgleitung unter besonderer Berücksichtigung des Phacoid-Problems. Mitt Geol Staatsinst Hamburg 31:146–275

    Google Scholar 

  • Voigt S, Hilbrecht H (1997) Late Cretaceous carbon isotope stratigraphy in Europe: correlation and relations with sea level and sediment stability. Palaeogeogr Palaeoclim Palaeoecol 134:39–59

    Article  Google Scholar 

  • Voigt T, Wiese F, von Eynatten H, Franzke HJ, Gaupp R (2006) Facies evolution of syntectonic Upper Cretaceous deposits in the Subhercynian Cretaceous Basin and adjoining areas (Germany). Z Dt Ges Geowiss 157:203–243

    Google Scholar 

  • Voigt S, Aurag A, Leis F, Kaplan U (2007) Late Cenomanian to Middle Turonian high-resolution carbon isotope stratigraphy: new data from the Münsterland Cretaceous Basin, Germany. Earth Planet Sci Lett 252:196–210

    Article  Google Scholar 

  • Voigt S, Wagreich M, Surlyk S, Walaszczyk I, Uličný D, Čech S, Voigt T, Wiese F, Wilmsen M, Niebuhr B, Reich M, Funk H, Michalík J, Jagt JWM, Felder PJ, Schulp AS (2008a) Cretaceous. In: McCann T (ed) The Geology of Central Europe, vol 2. Mesozoic and Cenozoic. Geol Soc, London, pp 923–997

    Google Scholar 

  • Voigt S, Erbacher J, Mutterlose J, Weiss W, Westerhold T, Wiese F, Wilmsen M, Wonik T (2008b) The Cenomanian–Turonian of the Wunstorf section (North Germany): global stratigraphic reference section and new orbital time scale for Oceanic Anoxic Event 2. Newsl Stratigr 43:65–89

    Article  Google Scholar 

  • von Strombeck A (1859) Beitrag zur Kenntnis des Pläners über der Westphälischen Steinkohlenformation. Z Dt Geol Ges 11:27–77

    Google Scholar 

  • Wendler JE, Meyers SR, Wendler I, Kuss J (2014) A million-year-scale control on Late Cretaceous sea-level. Newsl Stratigr 47:1–19

    Article  Google Scholar 

  • Wick W (1947) Aufbereitungsmethoden in der Mikropaläontologie. Jber Naturhist Ges Hannover 98:35–41

    Google Scholar 

  • Wiese F (1999) Stable isotope data (δ13C, δ18O) from the Middle and Upper Turonian (Upper Cretaceous) of Liencres (Cantabria, northern Spain) with a comparison to northern Germany (Söhlde & Salzgitter-Salder). Newsl Stratigr 37:37–62

    Article  Google Scholar 

  • Wiese F (2009) The Söhlde Formation (Cenomanian, Turonian) of NW Germany: shallow marine pelagic red beds. SEPM Spec Publ 91:53–170

    Google Scholar 

  • Wiese F, Kaplan U (2001) The potential of the Lengerich section (Münster Basin, northern Germany) as a possible candidate Global boundary Stratotype Section and Point (GSSP) for the Middle/Upper Turonian boundary. Cretac Res 22:549–563

    Article  Google Scholar 

  • Wiese F, Wilmsen M (1999) Sequence stratigraphy in the Cenomanian to Campanian of the North Cantabrian Basin (northern Spain). N Jb Geol Paläont Abh 212:131–173

    Article  Google Scholar 

  • Wiese F, Wood CJ, Wray DS (2004a) New advances in the stratigraphy and geochemistry of the German Turonian (Late Cretaceous) tephrostratigraphic framework. Acta Geol Polon 54:657–671

    Google Scholar 

  • Wiese F, Čech S, Ekrt B, Kost’ak M, Mazuch M, Voigt S (2004b) The Upper Turonian of the Bohemian Cretaceous Basin (Czech Republic) exemplified by the Ùpholavy working quarry: integrated stratigraphy and palaeoceanography of a gateway to the Tethys. Cretac Res 25:329–352

    Article  Google Scholar 

  • Wilmsen M (2003) Sequence stratigraphy and palaeoceanography of the Cenomanian Stage in northern Germany. Cretac Res 24:525–568

    Article  Google Scholar 

  • Wilmsen M (2007) Integrated stratigraphy of the upper Lower–lower Middle Cenomanian of northern Germany and southern England. Acta Geol Polon 57:263–279

    Google Scholar 

  • Wilmsen M (2008) An Early Cenomanian (Late Cretaceous) maximum flooding bioevent in NW Europe: correlation, sedimentology and biofacies. Palaeogeogr Palaeoclimat Palaeoecol 258:317–333

    Article  Google Scholar 

  • Wilmsen M, Nagm E (2013) Sequence stratigraphy of the lower Upper Cretaceous (Upper Cenomanian–Turonian) of the Eastern Desert. Egypt Newsl Stratigr 46:23–46

    Article  Google Scholar 

  • Wilmsen M, Voigt T (2006) The Middle-Upper Cenomanian of Zilly (Sachsen-Anhalt, northern Germany) with remarks on the Pycnodonte Event. Acta Geol Polon 56:17–31

    Google Scholar 

  • Wilmsen M, Niebuhr B, Hiss M (2005) The Cenomanian of northern Germany: facies analysis of a transgressive biosedimentary system. Facies 51:242–263

    Article  Google Scholar 

  • Wilmsen M, Niebuhr B, Wood CJ, Zawischa D (2007) Fauna and palaeoecology of the Middle Cenomanian Praeactinocamax primus Event at the type locality, Wunstorf quarry, northern Germany. Cretac Res 28:428–460

    Article  Google Scholar 

  • Wilmsen M, Niebuhr B, Chellouche P, Pürner T, Kling M (2010) Facies pattern and sea-level dynamics of the early Late Cretaceous transgression: a case study from the lower Danubian Cretaceous Group (Bavaria, southern Germany). Facies 56:483–507

    Article  Google Scholar 

  • Winchester JA, Floyd PA (1977) Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem Geol 20:325–343

    Article  Google Scholar 

  • Wray DS (1995) Origin of clay-rich beds in Turonian chalks from Lower Saxony, Germany—a rare-earth element study. Chem Geol 119:161–178

    Article  Google Scholar 

  • Wray DS (1999) Identification and long-range correlation of bentonites in Turonian–Coniacian (Upper Cretaceous) chalks of northwest Europe. Geol Mag 136:361–371

    Article  Google Scholar 

  • Wray DS, Wood CJ (1998) Distinction between detrital and volcanogenic clay-rich beds in Turonian–Coniacian chalks of eastern England. Proc Yorkshire Geol Soc 52:95–105

    Article  Google Scholar 

  • Wray DS, Kaplan U, Wood CJ (1995) Tuff-Vorkommen und ihre Bio- und Eventstratigraphie im Turon des Teutoburger Waldes, der Egge und des Haarstranges. Geol Paläont Westfalen 31:1–155

    Google Scholar 

  • Wray DS, Wood CJ, Ernst G, Kaplan U (1996) Geochemical subdivision and correlation of clay-rich beds in Turonian sediments of northern Germany. Terra Nova 8:603–610

    Article  Google Scholar 

  • Wulff L, Kaplan U, Mutterlose J (2017) Zur spätkretazischen Hebungsgeschichte des Raumes Halle (Westfalen): die Biostratigraphie der Rutschmassen des Hesseltals. Geol Paläont Westfalen 89:5–19

    Google Scholar 

  • Ziegler PA (1990) Geological atlas of Western and Central Europe. 2nd edn. Shell Intern Petrol, Maatschappij

    Google Scholar 

  • Ziegler PA, Cloetingh S, van Wees JD (1995) Dynamics of intra-plate compressional deformation: the Alpine foreland and other examples. Tectonophysics 252:7–59

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to two constructive anonymous reviews and the professional editorial handling by A. Munnecke (Erlangen). We would also like to thank Michaela Berensmeier and Nadine Janetschke (both Dresden) for support in logging and sampling of the Niederntudorf core and quarry sections, respectively. Ronald Winkler (Dresden) prepared most of the thin-sections. David Wray (Greenwich) and Tobias Püttmann (Bochum) are thanked for REE and calcareous nannofossil analyses of bentonite TF, respectively. The late Karl-Armin Tröger (Freiberg) identified the inoceramids from the Klieve quarry section. We also like to thank Ulrich Kaplan (Gütersloh) and Frank Wiese (Göttingen) for discussion of the “Soest Grünsand problem”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Wilmsen.

Appendices

Appendix 1

Isotope data of the Klieve composite section

Depth (m)

δ13C

δ18O

Klieve composite section

20.40

2.16

− 4.77

Erwitte Fm

20.00

2.04

− 4.92

19.50

2.12

− 5.13

19.00

2.12

− 4.84

18.50

2.12

− 4.90

18.00

2.10

− 4.74

17.50

2.05

− 4.65

17.00

2.21

− 4.97

16.50

2.21

− 5.02

16.00

2.24

− 5.05

15.50

2.16

− 5.32

15.00

2.08

− 5.12

14.50

2.06

− 4.88

14.00

2.14

− 4.89

13.50

2.04

− 5.02

13.00

2.16

− 5.17

12.50

2.16

− 5.13

12.00

1.95

− 4.89

11.50

1.97

− 4.70

11.00

2.09

− 5.09

10.50

1.92

− 4.91

10.00

2.06

− 4.81

9.50

2.03

− 5.06

9.00

1.97

− 4.98

8.50

1.94

− 5.01

8.00

1.80

− 5.10

7.50

1.79

− 4.90

7.00

1.74

− 5.18

6.50

1.72

− 4.87

6.00

1.58

− 4.42

5.50

1.67

− 4.82

5.00

1.78

− 5.37

4.50

1.65

− 5.09

4.00

1.64

− 4.69

3.70

1.32

− 5.04

Basal Erwitte Fm

3.60

1.40

− 5.78

Topmost Duisburg Fm, Soest Grünsand Mb

3.20

1.47

− 5.47

Duisburg Fm, Soest Grünsand Mb

2.90

1.50

− 5.83

2.50

1.52

− 5.77

2.20

1.49

− 5.21

1.95

1.27

− 5.88

1.60

1.17

− 5.83

1.40

1.44

− 6.10

1.10

1.49

− 6.10

0.80

1.33

− 6.07

0.50

1.46

− 6.16

0.20

1.32

− 6.23

0.01

1.15

− 5.38

Basal Duisburg Fm (base quarry)

0.00

1.09

− 5.25

Topmost Oerlinghausen Fm (top borehole)

0.50

1.11

− 5.32

Oerlinghausen Fm

1.00

1.12

− 5.26

1.50

1.01

− 4.41

2.00

1.20

− 5.21

2.50

1.13

− 5.18

3.00

1.19

− 6.08

3.50

1.10

− 4.91

4.00

1.09

− 5.89

4.40

1.32

− 5.71

5.00

1.21

− 5.73

5.50

1.28

− 5.93

6.00

1.16

− 5.95

6.55

1.27

− 6.01

7.00

1.10

− 6.34

7.55

1.23

− 5.91

8.00

1.22

− 5.56

8.50

1.29

− 5.19

9.00

1.35

− 5.29

9.45

1.30

− 5.15

10.00

1.28

− 5.62

10.50

1.19

− 5.66

11.00

1.17

− 5.51

11.50

1.30

− 5.98

12.00

1.49

− 5.58

12.50

1.44

− 5.03

13.00

1.45

− 5.62

13.50

1.43

− 5.42

14.00

1.23

− 5.39

14.50

1.29

− 5.55

15.00

1.32

− 5.78

15.50

1.43

− 5.27

16.00

1.54

− 5.97

16.50

1.65

− 5.77

17.00

1.75

− 5.52

17.50

1.80

− 5.12

18.00

1.84

− 5.02

18.60

1.97

− 4.93

19.00

1.61

− 5.24

19.50

1.72

− 4.96

20.00

1.80

− 5.18

20.50

1.70

− 5.23

21.00

1.80

− 5.54

21.50

1.54

− 5.34

22.00

1.65

− 5.11

22.50

1.79

− 5.30

23.00

1.76

− 5.37

23.50

1.77

− 5.32

24.00

1.54

− 5.90

24.50

1.73

− 4.99

25.00

1.68

− 5.65

25.50

1.70

− 5.41

26.00

1.70

− 5.06

26.45

1.83

− 5.66

27.00

1.72

− 5.15

27.55

1.67

− 5.03

28.00

1.71

− 5.21

28.45

1.75

− 5.54

29.00

1.79

− 5.66

29.50

1.66

− 5.23

30.00

1.92

− 5.37

30.55

2.07

− 5.35

31.00

1.87

− 5.67

31.50

1.87

− 5.91

32.00

1.84

− 5.04

32.55

1.69

− 6.24

33.00

2.00

− 5.01

33.50

2.23

− 4.76

34.00

2.20

− 4.83

34.50

2.19

− 5.35

35.00

2.08

− 4.96

35.50

1.99

− 5.43

36.00

2.10

− 5.29

36.50

2.06

− 4.98

37.00

2.10

− 4.86

37.50

2.18

− 5.02

37.95

2.26

− 5.04

38.50

2.22

− 5.14

39.00

2.28

− 5.16

39.55

2.30

− 5.21

40.00

2.28

− 5.22

40.50

2.16

− 5.01

41.00

2.34

− 5.22

Oerlinghausen Fm, marl MTeuto

41.50

2.23

− 5.02

42.00

2.25

− 5.15

Oerlinghausen Fm, Weisse Grenzbank

42.50

2.23

− 5.54

43.00

2.32

− 5.02

43.50

2.26

− 4.96

44.00

2.34

− 4.69

Oerlinghausen Fm, Weiße Grenzbank

44.50

2.34

− 4.70

Oerlinghausen Fm, WGB base marl

45.00

2.55

− 4.67

Oerlinghausen Fm

45.50

2.52

− 5.05

46.00

2.54

− 5.17

46.50

2.64

− 4.92

47.00

2.64

− 5.24

47.48

2.73

− 5.27

48.00

2.83

− 4.78

48.48

2.67

− 5.61

Oerlinghausen Fm, marl MSubteuto

49.00

2.98

− 5.34

Oerlinghausen Fm

49.55

3.05

− 5.14

50.00

3.11

− 5.51

50.50

3.12

− 5.29

51.00

3.01

− 5.29

51.50

3.30

− 5.41

52.00

3.16

− 5.06

52.50

3.31

− 5.08

53.00

3.47

− 5.32

53.50

3.49

− 5.27

54.00

3.30

− 5.33

54.50

3.30

− 5.35

55.00

3.11

− 5.32

 

55.50

3.11

− 5.44

56.00

3.01

− 5.47

56.50

3.00

− 4.94

57.00

2.87

− 5.66

57.48

3.03

− 5.37

58.00

3.05

− 6.99

58.50

2.63

− 5.06

59.00

3.19

− 4.26

59.55

3.03

− 5.45

60.00

2.99

− 5.26

60.55

2.88

− 5.36

 

61.00

2.88

− 4.89

61.52

3.08

− 5.21

62.00

2.93

− 5.47

62.55

2.97

− 4.79

63.00

2.88

− 5.23

63.55

2.99

− 5.17

64.00

2.86

− 5.14

64.55

2.88

− 4.10

Basal Oerlinghausen Fm

65.00

2.99

− 5.01

Topmost Büren Fm

65.50

2.95

− 5.13

Büren Fm

66.00

2.77

− 5.45

66.50

3.04

− 5.35

67.00

3.05

− 5.22

67.52

2.99

− 4.92

68.00

2.93

− 5.48

68.50

2.90

− 5.32

69.00

2.95

− 5.23

69.52

3.07

− 5.53

70.00

3.20

− 5.35

70.50

2.79

− 5.58

71.00

3.15

− 5.28

71.50

2.96

− 5.20

72.00

3.05

− 5.30

72.45

3.04

− 5.52

73.00

3.12

− 5.20

73.50

3.37

− 5.26

74.00

3.29

− 5.45

74.50

3.10

− 5.67

75.00

3.20

− 5.74

75.50

3.17

− 5.79

76.00

3.25

− 5.87

76.50

3.35

− 5.56

77.00

3.55

− 5.72

77.55

3.80

− 5.56

78.00

3.68

− 5.81

78.45

3.64

− 5.72

79.00

4.30

− 5.98

Basal Büren Fm

79.55

4.45

− 5.96

Topmost Hesseltal Fm

79.80

4.69

− 5.61

Hesseltal Fm

80.17

4.63

− 5.85

80.45

4.62

− 5.67

80.80

4.58

− 5.93

81.03

4.61

− 5.71

81.45

4.79

− 5.58

81.75

4.59

− 4.65

Basal Hesseltal Fm

81.90

4.57

− 4.37

Topmost Brochterbeck Fm, Kalkknollenbank

82.23

3.51

− 5.44

Brochterbeck Fm, Hoppenstedt Mb

82.50

3.27

− 5.46

82.50

4.65

− 4.56

83.00

3.13

− 5.39

83.50

3.03

− 5.49

84.00

2.56

− 5.88

84.50

2.98

− 4.97

85.00

2.98

− 5.25

Appendix 2

Isotope data of the Niederntudorf composite section

Depth (m)

δ13C

δ18O

Niederntudorf section

2.40

1.66

− 5.04

Erwitte Fm

2.70

1.72

− 4.87

3.00

1.57

− 4.62

3.30

1.73

− 4.74

3.60

1.77

− 4.80

3.90

1.74

− 4.52

4.36

1.88

− 4.39

4.64

1.63

− 4.37

4.92

1.90

− 4.31

5.20

1.92

− 4.34

5.48

1.70

− 4.49

5.76

1.92

− 4.26

6.04

1.71

− 4.68

6.32

1.90

− 4.65

6.60

1.87

− 4.22

6.88

1.65

− 4.41

7.16

2.01

− 4.44

7.44

1.61

− 4.32

7.72

1.90

− 4.40

8.00

1.82

− 4.53

8.28

1.79

− 4.74

8.56

1.82

− 4.34

8.84

1.88

− 4.59

9.12

1.81

− 4.56

9.40

1.82

− 4.45

9.60

1.88

− 4.13

9.90

1.61

− 4.19

10.25

1.85

− 4.07

10.45

1.88

− 4.32

10.75

1.77

− 4.71

11.05

1.97

− 3.83

11.36

2.13

− 3.62

11.45

2.01

− 4.15

11.92

2.08

− 3.73

12.20

1.95

− 4.17

12.48

2.03

− 4.39

Basal Erwitte Fm

12.76

2.03

− 4.63

Topmost Duisburg Fm, Soest Grünsand Mb

13.04

1.84

− 4.51

Duisburg Fm, Soest Grünsand Mb

13.32

1.66

− 4.87

Duisburg Fm, Soest Grünsand Mb, marl ME

13.60

1.74

− 3.37

Duisburg Fm, Soest Grünsand Mb, marl ME

13.75

1.15

− 4.75

Duisburg Fm, Soest Grünsand Mb, marl ME

14.03

1.47

− 4.90

Duisburg Fm, Soest Grünsand Mb

14.18

1.38

− 5.10

14.25

1.58

− 4.91

14.50

1.69

− 5.06

14.80

1.34

− 4.86

Basal Duisburg Fm, Soest Grünsand Mb

15.20

1.34

− 4.93

Topmost Oerlinghausen Fm

15.65

1.30

− 4.67

Oerlinghausen Fm

15.92

1.19

− 4.58

16.40

1.35

− 4.68

16.24

1.31

− 4.99

16.48

1.41

− 4.95

16.72

1.18

− 4.78

17.04

1.26

− 4.73

17.32

1.28

− 4.73

17.60

1.23

− 5.09

18.05

1.29

− 4.59

18.40

1.39

− 5.02

18.62

1.49

− 4.51

18.85

1.47

− 4.90

19.20

1.43

− 4.74

19.52

1.37

− 5.13

19.80

1.32

− 4.95

20.02

1.36

− 4.65

20.20

1.29

− 4.90

20.60

1.43

− 4.81

20.90

1.46

− 4.72

21.10

1.31

− 4.84

21.40

1.41

− 4.97

21.70

1.37

− 5.11

22.00

1.27

− 5.32

22.50

1.27

− 5.07

23.00

1.26

− 4.95

23.50

1.31

− 5.19

24.00

1.47

− 4.54

24.50

1.42

− 5.16

25.00

1.31

− 5.17

25.50

1.25

− 5.30

26.00

1.18

− 5.24

26.50

1.37

− 5.50

27.00

1.38

− 5.63

27.50

1.49

− 5.23

28.00

1.56

− 5.33

28.50

1.54

− 4.73

29.00

1.40

− 5.22

29.50

1.25

− 5.28

30.00

1.39

− 5.31

30.50

1.49

− 4.88

31.00

1.46

− 5.75

31.50

1.43

− 5.47

32.00

1.75

− 5.17

32.50

1.67

− 5.43

33.00

1.92

− 5.10

33.50

1.81

− 5.06

34.00

2.22

− 4.75

34.50

2.17

− 4.88

35.00

2.02

− 5.14

35.50

1.91

− 4.56

36.00

1.98

− 4.99

36.50

1.86

− 4.85

37.00

1.89

− 5.45

37.50

1.93

− 5.07

38.00

1.99

− 5.17

38.50

2.02

− 4.42

39.00

2.06

− 4.26

39.50

1.88

− 4.77

40.00

2.04

− 4.76

40.50

1.94

− 4.84

41.00

2.12

− 5.05

41.50

2.00

− 4.84

42.00

1.94

− 5.14

42.50

1.86

− 4.95

43.00

1.74

− 5.18

43.50

1.93

− 5.27

44.00

1.82

− 4.92

44.50

1.90

− 5.06

45.00

1.85

− 4.90

45.50

1.90

− 4.82

46.00

1.94

− 4.95

46.50

1.84

− 5.14

47.00

1.86

− 4.86

47.50

1.92

− 5.01

48.00

1.82

− 4.99

48.50

1.90

− 5.10

49.00

1.92

− 5.29

49.50

1.77

− 5.15

50.00

2.07

− 5.11

50.50

2.07

− 4.97

51.00

2.10

− 4.99

51.50

2.08

− 4.98

52.00

2.12

− 5.20

52.50

2.18

− 5.09

53.00

2.28

− 4.82

53.50

2.17

− 4.75

54.00

2.25

− 4.31

54.50

2.47

− 5.07

55.00

2.29

− 4.94

55.50

2.33

− 4.90

56.00

2.37

− 4.92

56.50

2.34

− 4.71

57.00

2.22

− 4.97

57.50

2.17

− 4.87

58.00

2.12

− 5.00

58.50

2.07

− 4.84

59.00

2.19

− 4.74

59.50

2.15

− 5.02

60.00

2.30

− 5.08

60.50

2.29

− 4.95

61.00

2.31

− 4.76

61.50

2.27

− 4.93

62.00

2.27

− 4.77

62.50

2.39

− 4.63

63.00

2.39

− 4.78

63.50

2.26

− 5.18

64.00

2.36

− 4.58

Oerlinghausen Fm, marl MTeuto

64.50

2.41

− 4.98

Oerlinghausen Fm, marl MTeuto

65.00

2.44

− 5.21

Oerlinghausen Fm, Weisse Grenzbank

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wilmsen, M., Dölling, B., Hiss, M. et al. The lower Upper Cretaceous of the south-eastern Münsterland Cretaceous Basin, Germany: facies, integrated stratigraphy and inter-basinal correlation. Facies 65, 13 (2019). https://doi.org/10.1007/s10347-018-0552-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10347-018-0552-1

Keywords

Navigation