Advertisement

Facies

, 64:22 | Cite as

Palynofacies associated to hyperpycnite deposits of the Miocene, Cabo Viamonte Beds, Austral Basin, Argentina

  • Mirta E. Quattrocchio
  • Daniela E. Olivera
  • Marcelo A. Martínez
  • Juan J. Ponce
  • Noelia B. Carmona
Original Article
  • 84 Downloads

Abstract

The Miocene deposits in the Punta Basílica locality, southernmost Argentina, are included within the Cabo Viamonte Beds, Cabo Domingo Group, in the Austral foreland basin of Tierra del Fuego province. The prograding clinoform systems were accumulated during a weak compressional tectonic regime that allowed the development of a narrow shelf. Paleoenvironmental reconstructions suggest that these clinoforms comprise two dominant architectural elements, channel-levee and lobe complexes, formed mainly by density hyperpycnal currents in outer shelf to depositional slope environments. The transitional and recurrent (vertical and lateral) alternation between sedimentary structures without rheologic boundaries associated with the co-occurrence of plant remains (Nothofagus) are diagnostic criteria for the recognition of hyperpycnites. This type of density flow typically transports large volumes of sediment and organic matter from proximal to deep-marine settings. Four palynofacies types were recognized in a cluster analysis. In general, the palynofacies show predominance of spores and pollen grains, tissues, cuticles, and spongy to fibrous amorphous organic matter (plant and/or freshwater to brackish algae derived), which reflect different positions within the depositional system (e.g., levee-channel and lobe deposits). The co-occurrence of inshore (Batiacasphaera spp., Lingulodinium sp.) with relatively more oceanic (Operculodinium centrocarpum, Spiniferites spp.) dinoflagellates is a strong indication that shallow-water assemblages have been displaced into deep-water settings. Due to the presence of Lingulodinium hemicystum (first appearance data: 23.0 Ma.) and Pentadinium laticinctum (last appearance data: 11.6 Ma.) an age not older than Miocene and not younger than the Serravallian/Tortorian boundary for the Punta Basílica section is proposed.

Keywords

Hyperpycnites Palynofacies Miocene Cabo Viamonte Beds Austral Basin Argentina 

Notes

Acknowledgements

We thank S. Candel, F. Ponce and M. Espié for their assistance during field work. The authors kindly acknowledge the reviews of Hartmut Jäger and George R. Dix and the comments of Editor-in-Chief Axel Munnecke, which improved the final version of the manuscript. Financial support was provided by Consejo Nacional de Investigaciones Científicas y Técnicas following Research Project: (PIP 417); Agencia Nacional de Promoción Científica y Tecnológica (PICT 2011-1373); Agencia Nacional de Promoción Científica y Tecnológica-Universidad Nacional de Río Negro (PICTO-UNRN 2010-0199) and Secretaría General de Ciencia y Tecnología de la Universidad Nacional del Sur (PGI-24/H142).

Supplementary material

10347_2018_535_MOESM1_ESM.xls (31 kb)
Supplementary material 1. Seventeen organic matter types were distinguished for palynofacies analysis (XLS 31 kb)

References

  1. Barreda VD, Palazzesi L (2014) Response of plant diversity to Miocene forcing events: the case of Patagonia. In: Stevens WD, Montiel OM, Raven PH (eds) Paleobotany and biogeography: a festschrift for Alan Graham in his 80th year. Monographs in systematic botany, vol 128. Ann Missouri Bot Gard Press, St. Louis, pp 1–25Google Scholar
  2. Batten DJ (1983) Identification of amorphous sedimentary organic matter by transmitted light microscopy. In: Brooks J (ed) Petroleum geochemistry and exploration of Europe. Geol. Soc. Spec. Pub., vol 12. The Geological Society/Blackwell, Oxford, pp 275–288Google Scholar
  3. Batten DJ (1996) Chapter 26. Palynofacies. Introduction. In: Jansonius J, McGregor DC (eds) Palynology: principles and applications, vol 3. AASP, Dallas, pp 1011–1064Google Scholar
  4. Biddle KT, Uliana MA, Mitchum RM Jr, Fitzgerald M, Wright RC (1986) The stratigraphic and structural evolution of the central and eastern Magallanes Basin, southern South America. In: Allen PA, Homewood P (eds) Foreland basins, vol 8. Ass Sediment Spec Publ, Belgium, pp 41–61CrossRefGoogle Scholar
  5. Biscara L, Mulder T, Martinez P, Baudin F, Etcheber H, Jouanneau JM, Garlan T (2011) Transport of terrestrial organic matter in the Ogooué deep sea turbidite system (Gabon). Mar Pet Geol 28(5):1061–1072CrossRefGoogle Scholar
  6. Brugman WA, van Bergen PF, Kerp JHF (1994) A quantitative approach to Triassic palynology: the Lettenkeuper of the Germanic Basin as an example. In: Traverse A (ed) Sedimentation of organic particles, vol 19. Cambridge Univ Press, New York, pp 409–429CrossRefGoogle Scholar
  7. Caminos R, Haller M, Lapido J, Lizuain O, Page A, Ramos V (1981) Reconocimiento geológico de los Andes Fueguinos; Territorio Nacional de Tierra del Fuego. In: 8th Congreso Geológico Argentino, San Luis, Proceedings, vol 3, pp 759–786Google Scholar
  8. Carrillo-Berumen R, Quattrocchio ME, Helenes J (2013) Palinomorfos continentales del Paleógeno de las formaciones Chorrillo Chico y Agua Fresca, Punta Prat, Región de Magallanes, Chile. Andean Geol 40(3):539–560Google Scholar
  9. Delcourt PA, Delcourt HR (1980) Pollen preservation and Quaternary environmental history in the southeastern United States. Palynology 4:215–231CrossRefGoogle Scholar
  10. Galeazzi JS (1998) Structural and stratigraphic evolution of the Western Malvinas basin, Argentina. Am Assoc Pet Geol B 82:596–636Google Scholar
  11. Gorin GE, Steffen D (1991) Organic facies as a tool for recording eustatic variations in marine fine-grained carbonates-example of the Berriasian stratotype at Berrias (Ardèche, SE France). Palaeogeogr Palaeoclimatol Palaeoecol 85:303–320CrossRefGoogle Scholar
  12. Grimm E (2004) TGView 2.0.2. Springfield (IL): Illinois State Museum. Research and Collection CenterGoogle Scholar
  13. Hammer O, Harper D (2009) PAST: paleontological statistics software package for education and data analysis. Version 1.94b. Paleontol Electrón 4(1):9Google Scholar
  14. Kranck EH (1932) Geological investigations in the Cordillera of Tierra del Fuego. Acta Geogr 4:1–231Google Scholar
  15. Malumián N (1999) La sedimentación y el volcanismo terciarios en la Patagonia extraandina. La sedimentación en la Patagonia extraandina. In: Caminos R (ed) Geología Argentina, Anales 29, Servicio Geológico Minero Argentino. Instituto de Geología y Recursos Minerales, San Martin, pp 557–612Google Scholar
  16. Malumián N, Náñez C (1996) Microfósiles y nanofósiles calcareos de la plataforma continental. In: Ramos VA, Tunic MA (eds) Geología y recursos naturales de la plataforma continental Argentina. In: 13th Congreso Geológico Argentino No, 3th Congreso de Exploración de Hidrocarburos, Buenos Aires, Proceedings, vol 5, pp 73–93Google Scholar
  17. Malumián N, Olivero EB (2006) El Grupo Cabo Domingo, Tierra del Fuego: bioestratigrafía, paleoambientes y acontecimientos del Eoceno-Mioceno marino. Rev Asoc Geol Argent 61:139–160Google Scholar
  18. Martínez MA, Prámparo MB, Quattrocchio ME, Zavala CA (2008) Depositional environments and hydrocarbon potential of the Middle Jurassic Los Molles Formation, Neuquén Basin, Argentina: palynofacies and organic geochemical data. Rev Geol Chile 35(2):279–305CrossRefGoogle Scholar
  19. Martínez MA, Olivera DE, Zavala C, Quattrocchio ME (2016) Palynotaphofacies analysis applied to Jurassic marine deposits, Neuquén Basin. Argent Facies 62(2):1–10Google Scholar
  20. McArthur AD, Kneller BC, Wakefield MI, Souza PA, Kuchle J (2016) Palynofacies classification of the depositional elements of confined turbidite systems: examples from the Gres d’Annot, SE France. Mar Pet Geol 77:1254–1273CrossRefGoogle Scholar
  21. Mignard SLA, Mulder T, Martinez P, Charlier K, Rossignol L, Garlan T (2017) Deep-sea terrigenous organic carbon transfer and accumulation: impact of sea-level variations and sedimentation processes off the Ogooue River (Gabon). Mar Pet Geol 85:35–53CrossRefGoogle Scholar
  22. Mulder T, Syvitski JPM, Migeon S, Faugères JC, Savoye B (2003) Marine hyperpycnal flows: initiation, behavior and related deposits. A review. Mar Pet Geol 20:861–882CrossRefGoogle Scholar
  23. Oboh-Ikuenobe FE, de Villiers SE (2003) Dispersed organic matter in samples from the western continental shelf of Southern Africa: palynofacies assemblages and depositional environment of late Cretaceous and younger sediments. Palaeogeogr Palaeoclimatol Palaeoecol 201:67–88CrossRefGoogle Scholar
  24. Olivero EB, Malumián N (2008) Mesozoic-Cenozoic stratigraphy of the Fuegian Andes, Argentina. Geol Acta 6:5–18Google Scholar
  25. Olivero EB, Martinioni DR (2001) A review of the geology of the Argentinean Fuegian Andes. J S Am Earth Sci 14:175–188CrossRefGoogle Scholar
  26. Olivero EB, Malumián N, Palamarczuk S (2003) Estratigrafia del Cretácico superior-Paleógeno del área de bahía Thetis, Andes fueguinos Argentina acontecimientos biológicos y paleobiológicos. Rev Geol Chile 30:245–263CrossRefGoogle Scholar
  27. Pacton M, Gorin GE, Vasconcelos C (2011) Amorphous organic matter—experimental data on formation and the role of microbes. Rev Palaeobot Palynol 166(3–4):253–267CrossRefGoogle Scholar
  28. Parry CC, Whitley PKJ, Simpson RDH (1981) Integration of palynological and sedimentological methods in facies analysis of the Brent Formation. In: Illing LV, Hobson GD (eds) Petroleum geology of the continental shelf of North West Europe. Heyden, London, pp 205–215Google Scholar
  29. Plink-Björklund P, Steel R (2004) Initiation of turbidity currents: outcrop evidence for Eocene hyperpycnal flow turbidites. Sediment Geol 165:29–52CrossRefGoogle Scholar
  30. Ponce JJ, Carmona NB (2011a) Coarse-grained sediment waves in hyperpycnal clinoform systems, Miocene of the Austral foreland basin. Argent Geol 39(8):763–766CrossRefGoogle Scholar
  31. Ponce JJ, Carmona NB (2011b) Miocene deep-marine hyperpycnal channel-levee complexes, Tierra del Fuego, Argentina: facies associations and architectural elements. In: Slatt RM, Zavala C (eds) Sediment transfer from shelf to deep water-revisiting the delivery system, vol 6. American Association of Petroleum Geologists, Tulsa, pp 75–93Google Scholar
  32. Ponce JJ, Olivero ED, Martinioni DR (2008) Upper Oligocene-Miocene clinoforms of the foreland Austral Basin of Tierra del Fuego, Argentina: stratigraphy, depositional sequences and architecture of the foredeep deposits. J S Am Earth Sci 26(1):36–54CrossRefGoogle Scholar
  33. Ramos VA, Haller MJ, Butrón F (1986) Geología y evolución tectónica de las Islas Barnevelt: atlántico Sur. Rev Asoc Geol Argent 40:137–154Google Scholar
  34. Ratan R, Chandra A (1983) Palynological investigations of the Arabian Sea sediments: fungal spores. Geophytology 13(2):195–201Google Scholar
  35. Robbiano JA, Arbe H, Gangui A (1996) Cuenca Austral marina. In: Ramos VA, Tunic MA (eds) Geología y recursos naturales de la plataforma continental argentina. In: 13th Congreso Geológico Argentino No, 3th Congreso de Exploración de Hidrocarburos, Buenos Aires, Proceedings, vol 17, pp 323–341Google Scholar
  36. Slater SM, McKie T, Vieira M, Wellman CH, Vajda V (2017) Episodic river flooding events revealed by palynological assemblages in Jurassic deposits of the Brent Group, North Sea. Palaeogeogr Palaeoclimatol Palaeoecol 485:389–400CrossRefGoogle Scholar
  37. Stetten E, Baudin F, Reyss JL, Martinez P, Charlier K, Schnyder J, Rabouille C, Dennielou B, Coston-Guarini J, Pruski AM (2015) Organic matter characterization and distribution in sediments of the terminal lobes of the Congo deep-sea fan: evidence for the direct influence of the Congo River. Mar Geol 369:182–195CrossRefGoogle Scholar
  38. Tyson RV (1995) Sedimentary organic matter. Chapman and Hall, LondonCrossRefGoogle Scholar
  39. Tyson RV, Follows B (2000) Palynofacies prediction of distance from sediment source: a case study from the Upper Cretaceous of the Pyrenees. Geology 28(6):569–571CrossRefGoogle Scholar
  40. Volkheimer W, Melendi DL (1976) Palinomorfos como fósiles guía (3ra. parte). Técnicas del laboratorio palinológico. Rev Min de Geol y Min 34:19–30Google Scholar
  41. Zavala C, Arcuri M (2016) Intrabasinal and extrabasinal turbidites: origin and distinctive characteristics. Sediment Geol 337:36–54CrossRefGoogle Scholar
  42. Zavala C, Gamero H, Arcuri M (2006) Lofting rhythmites: a diagnostic feature for the recognition of hyperpycnal deposits. In: 2006 GSA Annual Meeting, Philadelphia, Proceedings, pp 22–25Google Scholar
  43. Zavala C, Arcuri M, Blanco Valiente L (2012) The importance of plant remains as diagnostic criteria for the recognition of ancient hyperpycnites. Revue de Paléobiologie Genève Vol Spéc 11:457–469Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Mirta E. Quattrocchio
    • 1
    • 2
  • Daniela E. Olivera
    • 1
    • 2
  • Marcelo A. Martínez
    • 1
    • 2
  • Juan J. Ponce
    • 3
  • Noelia B. Carmona
    • 3
  1. 1.Instituto Geológico del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas CONICET), Departamento de Geología (UNS)Bahía BlancaArgentina
  2. 2.Departamento de GeologíaUniversidad Nacional del SurBahía BlancaArgentina
  3. 3.Instituto de Investigación en Paleobiología y Geología-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Río NegroGeneral RocaArgentina

Personalised recommendations