Advertisement

Facies

, 64:13 | Cite as

Late Smithian microbial deposits and their lateral marine fossiliferous limestones (Early Triassic, Hurricane Cliffs, Utah, USA)

  • Nicolas Olivier
  • Emmanuel Fara
  • Emmanuelle Vennin
  • Kevin G. Bylund
  • James F. Jenks
  • Gilles Escarguel
  • Daniel A. Stephen
  • Nicolas Goudemand
  • Dawn Snyder
  • Christophe Thomazo
  • Arnaud Brayard
Original Article

Abstract

Recurrent microbialite proliferations during the Early Triassic are usually explained by ecological relaxation and abnormal oceanic conditions. Most Early Triassic microbialites are described as single or multiple lithological units without detailed ecological information about lateral and coeval fossiliferous deposits. Exposed rocks along Workman Wash in the Hurricane Cliffs (southwestern Utah, USA) provide an opportunity to reconstruct the spatial relationships of late Smithian microbialites with adjacent and contemporaneous fossiliferous sediments. Microbialites deposited in an intertidal to subtidal interior platform are intercalated between inner tidal flat dolosiltstones and subtidal bioturbated fossiliferous limestones. Facies variations along these fossiliferous deposits and microbialites can be traced laterally over a few hundreds of meters. Preserved organisms reflect a moderately diversified assemblage, contemporaneous to the microbialite formation. The presence of such a fauna, including some stenohaline organisms (echinoderms), indicates that the development of these late Smithian microbial deposits occurred in normal-marine waters as a simple facies belt subject to relative sea-level changes. Based on this case study, the proliferation of microbialites cannot be considered as direct evidence for presumed harsh environmental conditions.

Keywords

Early Triassic Late Smithian Microbial deposits Metazoan fauna Lingulids Biotic recovery Depositional environments 

Notes

Acknowledgements

This work is a contribution to the ANR Project AFTER (ANR-13-JS06-0001-01). The CNRS INSU Interrvie, and the French ANR @RAction Grant (Project EvoDevOdonto) also supported this study. D.A. Stephen is grateful for the ongoing financial support of the College of Science and Health at Utah Valley University. Michael Hautmann is thanked for his assistance in bivalve taxonomy and ecology. Our thanks to Marilyne Imbault for her contribution to the ammonoid determination. The Workman Wash area is located on US public land under the stewardship of the Bureau of Land Management (BLM) of the US Department of the Interior; access to this land is gratefully acknowledged. We would like to thank Wolfgang Kießling and two anonymous reviewers for their helpful comments.

References

  1. Abdolmaleki J, Tavakoli V (2016) Anachronistic facies in the Early Triassic successions of the Persian Gulf and its palaeoenvironmental reconstruction. Palaeogeogr Palaeoclimatol Palaeoecol 446:213–224CrossRefGoogle Scholar
  2. Algeo TJ, Chen ZQ, Fraiser ML, Twitchett RJ (2011) Terrestrial–marine teleconnections in the collapse and rebuilding of Early Triassic marine ecosystems. Palaeogeogr Palaeoclimatol Palaeoecol 308:1–11CrossRefGoogle Scholar
  3. Atudorei NV (1999) Constraints on the Upper Permian to Upper Triassic marine carbon isotope curve. Case studies from the Tethys. Ph.D. thesis, University of Lausanne, pp 1–155Google Scholar
  4. Bagherpour B, Bucher H, Baud A, Brosse M, Vennemann T, Martini R, Guodun K (2017) Onset, development, and cessation of basal Early Triassic microbialites (BETM) in the Nanpanjiang pull-apart Basin, South China Block. Gondwana Res 44:178–204CrossRefGoogle Scholar
  5. Batten RL, Stokes WL (1986) Early Triassic gastropods from the Sinbad Member of the Moenkopi Formation, San Rafael Swell, Utah. Am Mus Novit 2864:1–33Google Scholar
  6. Baud A (2007) Lower Triassic microbialites versus skeletal carbonates, a competition on the Gondwana Margin. N M Mus Nat Hist Sci Bull 41:23Google Scholar
  7. Baud A (2013) The Smithian (Early Triassic) red ammonoid limestone of Oman, refuge for sponge-microbial build-ups during recovery phase. GSA Annual Meeting in DenverGoogle Scholar
  8. Baud A, Cirilli S, Marcoux J (1997) Biotic response to mass extinction: the lowermost Triassic microbialites. Facies 36:238–242Google Scholar
  9. Baud A, Richoz S, Pruss S (2007) The lower Triassic anachronistic carbonate facies in space and time. Glob Planet Chang 55:81–89CrossRefGoogle Scholar
  10. Baud A, Goudemand N, Nützel A, Brosse M, Frisk Å, Meier M, Bucher H (2015) Carbonate factory in the aftermath of the end-Permian mass extinction: griesbachian crinoidal limestones from Oman. Ber Inst Erdwiss K-F-Univ Graz 21:31Google Scholar
  11. Baud A, Friesenbichler E, Richoz S, Krystyn L, Sahakyan L (2017) Induan (Early Triassic) giant sponge-microbial build-ups in Armenia. In: 5th IGCP 630 international conference and field workshop, Erevan 8–14 October 2017 program and abstract, p 13Google Scholar
  12. Beatty TW, Zonneveld JP, Henderson CM (2008) Anomalously diverse Early Triassic ichnofossil assemblages in northwest Pangea: a case for a shallow-marine habitable zone. Geology 36(10):771–774CrossRefGoogle Scholar
  13. Biernat G, Emig CC (1993) Anatomical distinctions of the Mesozoic lingulide brachiopods. Acta Palaeontol Pol 38:1–20Google Scholar
  14. Blakey RC (1974) Stratigraphic and depositional analysis of the Moenkopi Formation, southeastern Utah. Utah Geol Miner Surv Bull 104:1–81Google Scholar
  15. Blakey RC (1977) Petroliferous lithosomes in the Moenkopi Formation, southern Utah. Utah Geol 4:67–84Google Scholar
  16. Blakey RC (1979) Oil impregnated carbonate rocks of the Timpoweap Member Moenkopi Formation, Hurricane Cliffs area, Utah and Arizona. Utah Geol 6:45–54Google Scholar
  17. Bottjer DJ, Clapham ME, Fraiser ML, Powers CM (2008) Understanding mechanisms for the end-Permian mass extinction and the protracted Early Triassic aftermath and recovery. GSA Today 18:4–10CrossRefGoogle Scholar
  18. Brayard A, Escarguel G, Bucher H, Monnet C, Brühwiler T, Goudemand N, Galfetti T, Guex J (2009) Good genes and good luck: ammonoid diversity and the end-Permian mass extinction. Science 325:1118–1121CrossRefGoogle Scholar
  19. Brayard A, Vennin E, Olivier N, Bylund KG, Jenks J, Stephen DA, Bucher H, Hofmann R, Goudemand N, Escarguel G (2011) Transient metazoan reefs in the aftermath of the end-Permian mass extinction. Nat Geosci 4:693–697CrossRefGoogle Scholar
  20. Brayard A, Bylund KG, Jenks JF, Stephen DA, Olivier N, Escarguel G, Fara E, Vennin E (2013) Smithian ammonoid faunas from Utah: implications for Early Triassic biostratigraphy, correlations and basinal paleogeography. Swiss J Palaeontol 132:141–219CrossRefGoogle Scholar
  21. Brayard A, Meier M, Escarguel G, Fara E, Nützel A, Olivier N, Bylund KG, Jenks JF, Stephen DA, Hautmann M, Vennin E, Bucher H (2015) Early Triassic Gulliver gastropods: spatio-temporal distribution and significance for the biotic recovery after the end-Permian mass extinction. Earth Sci Rev 146:31–64CrossRefGoogle Scholar
  22. Brayard A, Krumenacker LJ, Botting JP, Jenks JF, Bylund KG, Fara E, Vennin E, Olivier N, Goudemand N, Saucède T, Charbonnier S, Romano C, Doguzhaeva L, Thuy B, Hautmann M, Stephen DA, Thomazo C, Escarguel G (2017) Unexpected Early Triassic marine ecosystem and the rise of the Modern evolutionary fauna. Sci Adv 3:e1602159CrossRefGoogle Scholar
  23. Brosse M, Bucher H, Baud A, Hagdorn H, Hautmann M, Nützel A, Ware D, Frisk Å, Goudemand N (2018) New data from Oman indicate benthic high biomass productivity coupled with low taxonomic diversity in the aftermath of the Permian–Triassic Boundary mass extinction. Lethaia (in press) Google Scholar
  24. Brühwiler T, Brayard A, Bucher H, Guodun K (2008) Griesbachian and Dienerian (Early Triassic) ammonoid faunas from northwestern Guangxi and southern Guizhou (south China). Palaeontology 51:1151–1180CrossRefGoogle Scholar
  25. Buatois LA, Mángano MG (2011) Ichnology: organism-substrate interactions in space and time. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  26. Caravaca G, Brayard A, Vennin E, Guiraud M, Grosjean AS, Olivier N, Thomazo C, Fara E, Escarguel G, Bylund K, Jenks J (2017) Controlling factors for differential subsidence in the Sonoma Foreland Basin (Early Triassic, western USA). Geol Mag.  https://doi.org/10.1017/S0016756817000164 (in press) Google Scholar
  27. Chen ZQ, Benton MJ (2012) The timing and pattern of biotic recovery following the end-Permian mass extinction. Nat Geosci 5:375–383CrossRefGoogle Scholar
  28. Collin PY, Kershaw S, Tribovillard N, Forel MB, Crasquin S (2015) Geochemistry of post-extinction microbialites as a powerful tool to assess the oxygenation of shallow-marine water in the immediate aftermath of the end-Permian mass extinction. Int J Earth Sci 104:1025–1037CrossRefGoogle Scholar
  29. Collinson JW, Kendall CGSC, Marcantel JB (1976) Permian–Triassic boundary in eastern Nevada and west-central Utah. Bull Geol Soc Am 87:821–824CrossRefGoogle Scholar
  30. Dean JS (1981) Carbonate petrology and depositional environments of the Sinbad Limestone Member of the Moenkopi Formation in the Teasdale Dome Area, Wayne and Garfield Counties, Utah. Brigham Young Univ Geol Stud 28:19–51Google Scholar
  31. Dickinson WR (2006) Geotectonic evolution of the Great Basin. Geosphere 2:353–368CrossRefGoogle Scholar
  32. Dickinson WR (2013) Phanerozoic palinspastic reconstructions of Great Basin geotectonics (Nevada-Utah, USA). Geosphere 9:1384–1396CrossRefGoogle Scholar
  33. Erwin DH (1996) Understanding biotic recoveries: extinction, survival, and preservation during the end-Permian mass extinction. Evolutionary paleobiology. University of Chicago Press, Chicago, pp 398–418Google Scholar
  34. Erwin DH (2001) Lessons from the past: biotic recoveries from mass extinctions. Proc Natl Acad Sci USA 98:5399–5403CrossRefGoogle Scholar
  35. Ezaki Y, Liu J, Nagano T, Adachi N (2008) Geobiological aspects of the earliest Triassic microbialites along the southern periphery of the tropical Yangtze Platform: initiation and cessation of a microbial regime. Palaios 23:356–369CrossRefGoogle Scholar
  36. Ezaki Y, Liu JB, Adachi N (2012) Lower Triassic stromatolites in Luodian County, Guizhou Province, South China: evidence for the protracted devastation of the marine environments. Geobiology 10:48–59CrossRefGoogle Scholar
  37. Fang Y, Chen ZQ, Kershaw S, Li Y, Luo M (2017) An Early Triassic (Smithian) stromatolite associated with giant ooid banks from Lichuan (Hubei Province), South China: Environment and controls on its formation. Palaeogeogr Palaeoclimatol Palaeoecol 486:108–122CrossRefGoogle Scholar
  38. Flügel E (2002) Triassic reef patterns. In: Kiessling W, Flügel E, Golonka J (eds) Phanerozoic reef patterns. SEPM Special Publication, vol 72. SEPM Press, Tulsa, Oklahoma, pp 391–463CrossRefGoogle Scholar
  39. Forel MB, Crasquin S, Kershaw S, Collin PY (2013) In the aftermath of the end-Permian extinction: the microbialite refuge? Terra Nova 25:137–143CrossRefGoogle Scholar
  40. Foster WJ, Twitchett RJ (2014) Functional diversity of marine ecosystems after the Late Permian mass extinction event. Nat Geosci 7:233–238CrossRefGoogle Scholar
  41. Foster WJ, Danise S, Sedlacek A, Price GD, Hips K, Twitchett RJ (2015) Environmental controls on the post-Permian recovery of benthic, tropical marine ecosystems in western Palaeotethys (Aggtelek Karst, Hungary). Palaeogeogr Palaeoclimatol Palaeoecol 440:374–394CrossRefGoogle Scholar
  42. Foster WJ, Danise S, Price GD, Twitchett RJ (2017) Subsequent biotic crises delayed marine recovery following the late Permian mass extinction event in northern Italy. PLoS One 12:e0172321CrossRefGoogle Scholar
  43. Frey RW, Pemberton SG (1984) Trace fossil facies models. In: Walker RG (ed) Facies models, 2nd edn. Geoscience Canada, reprint series, vol 1, no 41, Ontario, pp 223–237Google Scholar
  44. Frey RW, Pemberton SG (1985) Biogenic structures in outcrops and cores. I. Approaches to ichnology. Bull Can Pet Geol 33:72–115Google Scholar
  45. Frey RW, Seilacher A (1980) Uniformity in marine invertebrate ichnology. Lethaia 13:183–207CrossRefGoogle Scholar
  46. Friesenbichler E, Richoz S, Baud A, Krystyn L, Sahakyan L, Vardanyan S, Peckmann J, Reitner J, Heindel K (2018) Sponge-microbial build-ups from the lowermost Triassic Chanakhchi section in southern Armenia: microfacies and stable carbon isotopes. Palaeogeogr Palaeoclimatol Palaeoecol 90:653–672CrossRefGoogle Scholar
  47. Fu W, Jiang DY, Montañez IP, Meyers SR, Motani R, Tintori A (2016) Eccentricity and obliquity paced carbon cycling in the Early Triassic and implications for post-extinction ecosystem recovery. Sci Rep 6:27793CrossRefGoogle Scholar
  48. Galfetti T, Bucher H, Ovtcharova M, Schaltegger U, Brayard A, Brühwiler T, Goudemand N, Weissert H, Hochuli PA, Cordey F, Guodun K (2007) Timing of the Early Triassic carbon cycle perturbations inferred from new U–Pb ages and ammonoid biochronozones. Earth Planet Sci Lett 258:593–604CrossRefGoogle Scholar
  49. Gall JC (1990) Les voiles microbiens. Leur contribution a la fossilisation des organismes au corps mou. Lethaia 23:21–28CrossRefGoogle Scholar
  50. Goodspeed TH, Lucas SG (2007) Stratigraphy, sedimentology, and sequence stratigraphy of the Lower Triassic Sinbad Formation, San Rafael Swell, Utah. N M Mus Nat Hist Sci Bull 40:91–101Google Scholar
  51. Grasby SE, Beauchamp B, Embry A, Sanei H (2013) Recurrent Early Triassic ocean anoxia. Geology 4:175–178CrossRefGoogle Scholar
  52. Gregory HE (1950) Geology and geography of the Zion [National] Park region, Utah and Arizona. US Geol Surv Prof Pap 220:1–200Google Scholar
  53. Grice K, Cao C, Love GD, Böttcher ME, Twitchett RJ, Grosjean E, Summons RE, Turgeon SC, Dunning W, Jin Y (2005) Photic zone euxinia during the Permian–Triassic superanoxic event. Science 307:706–709CrossRefGoogle Scholar
  54. Grosjean AS, Vennin E, Olivier N, Caravaca G, Thomazo C, Fara E, Escarguel G, Bylund KG, Jenks JF, Stephen DA, Brayard A (2018) Early Triassic environmental dynamics and microbial development during the Smithian-Spathian transition (Lower Weber Canyon, Utah, USA). Sediment Geol 363:136–151CrossRefGoogle Scholar
  55. Haig DW, Martin SK, Mory AJ, McLoughlin S, Backhouse J, Berrell RW, Kear BP, Hall R, Foster CB, Shi GR, Bevan JC (2015) Early Triassic (early Olenekian) life in the interior of East Gondwana: mixed marine–terrestrial biota from the Kockatea Shale, Western Australia. Palaeogeogr Palaeoclimatol Palaeoecol 417:511–533CrossRefGoogle Scholar
  56. Hakes WG (1976) Trace fossils and depositional environment of four clastic units, Upper Pennsylvanian megacyclothems, northeast Kansas. Univ Kans Paleontol Contrib Artic 63:46Google Scholar
  57. Hautmann M, Bucher H, Brühwiler T, Goudemand N, Kaim A, Nützel A (2011) An unusually diverse mollusc fauna from the earliest Triassic of South China and its implications for benthic recovery after the end-Permian biotic crisis. Geobios 44:71–85CrossRefGoogle Scholar
  58. Hautmann M, Smith AB, McGowan AJ, Bucher H (2013) Bivalves from the Olenekian (Early Triassic) of south-western Utah: systematics and evolutionary significance. J Syst Palaeontol 11:263–293CrossRefGoogle Scholar
  59. Hautmann M, Bagherpour B, Brosse M, Frisk Å, Hofmann R, Baud A, Nützel A, Goudemand N, Bucher H (2015) Competition in slow motion: the unusual case of benthic marine communities in the wake of the end-Permian mass extinction. Palaeontology 58:871–901CrossRefGoogle Scholar
  60. Hayden JM (2004) Geologic map of the divide quadrangle, Washington County, Utah, Utah geological survey map 197, scale 1:24,000Google Scholar
  61. Hofmann R, Goudemand N, Wasmer M, Bucher H, Hautmann M (2011) New trace fossil evidence for an early recovery signal in the aftermath of the end-Permian mass extinction. Palaeogeogr Palaeoclimatol Palaeoecol 310:216–226CrossRefGoogle Scholar
  62. Hofmann R, Hautmann M, Bucher H (2013a) A new paleoecological look at the Dinwoody Formation (Lower Triassic, western USA): intrinsic versus extrinsic controls on ecosystem recovery after the end-Permian mass extinction. J Paleontol 87:854–880CrossRefGoogle Scholar
  63. Hofmann R, Hautmann M, Wasmer M, Bucher H (2013b) Palaeoecology of the Spathian Virgin Formation (Utah, USA) and its implications for the Early Triassic recovery. Acta Palaeontol Pol 58:149–173Google Scholar
  64. Hofmann R, Hautmann M, Brayard A, Nützel A, Bylund KG, Jenks JF, Vennin E, Olivier N, Bucher H (2014) Recovery of benthic marine communities from the end-Permian mass extinction at the low latitudes of eastern Panthalassa. Palaeontology 57:547–589CrossRefGoogle Scholar
  65. Holmer LE, Popov LE, Klishevich I, Ghobadi Pour M (2016) Reassessment of the early Triassic lingulid brachiopod ‘Lingula’ borealis Bittner, 1899 and related problems of lingulid taxonomy. GFF.  https://doi.org/10.1080/11035897.2016.1149216 Google Scholar
  66. Jattiot R, Bucher H, Brayard A, Monnet C, Jenks JF, Hautmann M (2016) Revision of the genus Anasibirites Mojsisovics (Ammonoidea): an iconic and cosmopolitan taxon of the late Smithian (Early Triassic) extinction. Pap Palaeontol 2:155–188CrossRefGoogle Scholar
  67. Jattiot R, Bucher H, Brayard A, Brosse M, Jenks J, Bylund KG (2017) Smithian ammonoid faunas from northeastern Nevada: implications for Early Triassic biostratigraphy and correlation within the western USA basin. Palaeontogr Abt A 309:1–89Google Scholar
  68. Kaim A, Nützel A, Bucher H, Brühwiler T, Goudemand N (2010) Early Triassic (Late Griesbachian) gastropods from South China (Shanggan, Guangxi). Swiss J Geosci 103:121–128CrossRefGoogle Scholar
  69. Kershaw S (2017) Palaeogeographic variation in the Permian–Triassic boundary microbialites: a discussion of microbial and ocean processes after the end-Permian mass extinction. J Palaeogeogr 6:97–107CrossRefGoogle Scholar
  70. Kershaw S, Zhang T, Lan G (1999) A ?microbialite carbonate crust at the Permian–Triassic boundary in South China, and its palaeoenvironmental significance. Palaeogeogr Palaeoclimatol Palaeoecol 146:1–18CrossRefGoogle Scholar
  71. Kershaw S, Crasquin S, Li Y, Collin PY, Forel MB, Mu X, Baud A, Wang Y, Xie S, Maurer F, Guo L (2012) Microbialites and global environmental change across the Permian–Triassic boundary: a synthesis. Geobiology 10:25–47CrossRefGoogle Scholar
  72. Knoll AH, Bambach RK, Payne JL, Pruss S, Fischer WW (2007) Paleophysiology and end-Permian mass extinction. Earth Planet Sci Lett 256:295–313CrossRefGoogle Scholar
  73. Krystyn L, Richoz S, Baud A, Twitchett RJ (2003) A unique Permian-Triassic boundary section from the neotethyan Hawasina basin, Central Oman Mountains. Palaeogeogr Palaeoclimatol Palaeoecol 191:329–334CrossRefGoogle Scholar
  74. Lehrmann DJ (1999) Early Triassic calcimicrobial mounds and biostromes of the Nanpanjiang basin, south China. Geology 27:359–362CrossRefGoogle Scholar
  75. Lehrmann DJ, Wan Y, Wei J, Yu Y, Xiao J (2001) Lower Triassic peritidal cyclic limestone: an example of anachronistic carbonate facies from the Great Bank of Guizhou, Nanpanjiang Basin, Guizhou province, South China. Palaeogeogr Palaeoclimatol Palaeoecol 173:103–123CrossRefGoogle Scholar
  76. Lehrmann DJ, Ramezani J, Bowring SA, Martin MW, Montgomery P, Enos P, Payne JL, Orchard MJ, Wang H, Wei J (2006) Timing of recovery from the end-Permian extinction: geochronologic and biostratigraphic constraints from south China. Geology 34:1053–1056CrossRefGoogle Scholar
  77. Lehrmann DJ, Bentz JM, Wood T, Goers A, Dhillon R, Akin S, Li X, Payne JL, Kelley BM, Meyer KM, Schaal EK, Suarez MB, Yu M, Qin Y, Li R, Minzoni M, Henderson CM (2015) Environmental controls on the genesis of marine microbialites and dissolution surface associated with the end-Permian mass extinction: new sections and observations from the Nanpanjiang Basin, South China. Palaios 30:529–552CrossRefGoogle Scholar
  78. Lucas SG, Krainer K, Milner AR (2007) The type section and age of the Timpoweap Member and stratigraphic nomenclature of the Triassic Moenkopi Group in Southwestern Utah. N M Mus Nat Hist Sci Bull 40:109–117Google Scholar
  79. MacEachern JA, Pemberton SG, Gingras MK, Bann KL (2007) The ichnofacies paradigm: a fifty-year retrospective. In: Miller III W (ed) Trace fossils: concepts, problems, prospects. Elsevier, Amsterdam, pp 52–77CrossRefGoogle Scholar
  80. Marenco PJ, Griffin JM, Fraiser ML, Clapham ME (2012) Paleoecology and geochemistry of Early Triassic (Spathian) microbial mounds and implications for anoxia following the end-Permian mass extinction. Geology 40:715–718CrossRefGoogle Scholar
  81. Mary M, Woods AD (2008) Stromatolites of the Lower Triassic Union Wash Formation, CA: evidence for continued post-extinction environmental stress in western North America through the Spathian. Palaeogeogr Palaeoclimatol Palaeoecol 261:78–86CrossRefGoogle Scholar
  82. Mata SA, Bottjer DJ (2011) Origin of Lower Triassic microbialites in mixed carbonate-siliciclastic successions: ichnology, applied stratigraphy, and the end-Permian mass extinction. Palaeogeogr Palaeoclimatol Palaeoecol 300:158–178CrossRefGoogle Scholar
  83. Mata SA, Bottjer DJ (2012) Microbes and mass extinctions: paleoenvironmental distribution of microbialites during times of biotic crisis. Geobiology 10:3–24CrossRefGoogle Scholar
  84. McGowan AJ, Smith AB, Taylor PD (2009) Faunal diversity, heterogeneity and body size in the Early Triassic: testing post-extinction paradigms in the Virgin Limestone of Utah, USA. Aust J Earth Sci 56:859–872CrossRefGoogle Scholar
  85. Nielson RL (1991) Petrology, sedimentology and stratigraphic implications of the Rock Canyon Conglomerate, southwestern Utah. Utah Geol Surv Misc Publ 91(7):65Google Scholar
  86. Nielson RL, Johnson JL (1979) The Timpoweap Member of the Moenkopi Formation. Timpoweap Canyon Utah Utah Geol 6:17–27Google Scholar
  87. Olivier N, Brayard A, Fara E, Bylund KG, Jenks JF, Vennin E, Stephen DA, Escarguel G (2014) Smithian shoreline migrations and depositional settings in Timpoweap Canyon (Early Triassic, Utah, USA). Geol Mag 151:938–955CrossRefGoogle Scholar
  88. Olivier N, Brayard A, Vennin E, Escarguel G, Fara E, Bylund KG, Jenks JF, Caravaca G, Stephen DA (2016) Evolution of depositional settings in the Torrey area during the Smithian (Early Triassic, Utah, USA) and their significance for the biotic recovery. Geol J 51:600–626CrossRefGoogle Scholar
  89. Paull RA, Paull RK (1993) Interpretation of Early Triassic nonmarine–marine relations, Utah, U.S.A. N M Mus Nat Hist Sci Bull 3:403–409Google Scholar
  90. Paull RK, Paull RA (1994) Shallow-marine sedimentary facies in the earliest Triassic (Griesbachian) Cordilleran miogeocline, USA. Sediment Geol 93:181–191CrossRefGoogle Scholar
  91. Paull RK, Paull RA (1997) Transgressive conodont faunas of the early Triassic: an opportunity for correlation in the Tethys and the circum-Pacific. In: Dickins JM, Zunyi Y, Hongfu Y, Lucas SG, Acharyya SK (eds) Late Palaeozoic and Early Mesozoic circum-Pacific events and their global correlation. World and regional geology, vol 10. Cambridge University Press, New York, pp 158–167CrossRefGoogle Scholar
  92. Payne JL, Clapham ME (2012) End-Permian mass extinction in the oceans: an ancient analog for the twenty-first century? Annu Rev Earth Planet Sci 40:89–111CrossRefGoogle Scholar
  93. Payne JL, Lehrmann DJ, Wei J, Orchard MJ, Schrag DP, Knoll AH (2004) Large perturbations of the carbon cycle during recovery from the end-Permian extinction. Science 305:506–509CrossRefGoogle Scholar
  94. Payne JL, Lehrmann DJ, Wei J, Knoll AH (2006) The pattern and timing of biotic recovery from the end-Permian extinction on the Great Bank of Guizhou, Guizhou Province, China. Palaios 21:63–85CrossRefGoogle Scholar
  95. Payne JL, Turchyn AV, Paytan A, DePaolo DJ, Lehrmann DJ, Yu M, Wei J (2010) Calcium isotope constraints on the end-Permian mass extinction. Proc Natl Acad Sci 107:8543–8548CrossRefGoogle Scholar
  96. Peng Y, Shi GR, Gao Y, He W, Shen S (2007) How and why did the Lingulidae (Brachiopoda) not only survive the end-Permian mass extinction but also thrive in its aftermath? Palaeogeogr Palaeoclimatol Palaeoecol 252:118–131CrossRefGoogle Scholar
  97. Pietsch C, Bottjer DJ (2014) The importance of oxygen for the disparate recovery patterns of the benthic macrofauna in the Early Triassic. Earth Sci Rev 137:65–84CrossRefGoogle Scholar
  98. Pietsch C, Mata SA, Bottjer DJ (2014) High temperature and low oxygen perturbations drive contrasting benthic recovery dynamics following the end-Permian mass extinction. Palaeogeogr Palaeoclimatol Palaeoecol 399:98–113CrossRefGoogle Scholar
  99. Pörtner HO, Langenbuch M, Michaelidis B (2005) Synergistic effects of temperature extremes, hypoxia, and increases in CO2 on marine animals: from earth history to global change. J Geophys Res Oceans 110:C09S10.  https://doi.org/10.1029/2004JC002561 CrossRefGoogle Scholar
  100. Posenato R, Holmer LE, Prinoth H (2014) Adaptive strategies and environmental significance of lingulid brachiopods across the late Permian extinction. Palaeogeogr Palaeoclimatol Palaeoecol 399:373–384CrossRefGoogle Scholar
  101. Pruss SB, Bottjer DJ (2004) Late Early Triassic microbial reefs on the western United States: a description and model for their deposition in the aftermath of the end-Permian mass extinction. Palaeogeogr Palaeoclimatol Palaeoecol 211:127–137CrossRefGoogle Scholar
  102. Pruss SB, Bottjer DJ, Corsetti FA, Baud A (2006) A global marine sedimentary response to the end-Permian mass extinction: examples from southern Turkey and the western United States. Earth Sci Rev 78:193–206CrossRefGoogle Scholar
  103. Reeside JB Jr, Bassler H (1922) Stratigraphic sections in southwestern Utah and northwestern Arizona. US Geol Surv Prof Pap 129(D):53–77Google Scholar
  104. Ritter S, Osborn C, Goodrich C (2013) Sedimentology and reservoir characteristics of the Lower Triassic (Smithian) Sinbad Limestone Member of the Moenkopi Formation, San Rafael Swell, Utah. In: Morris TH, Ressetar R (eds) The San Rafael Swell and Henry Mountains Basin—geologic centerpiece of Utah, vol 42. Utah Geological Association Publications, Salt Lake City, pp 199–222Google Scholar
  105. Rodland DL, Bottjer DJ (2001) Biotic recovery from the end-Permian mass extinction: behavior of the inarticulate brachiopod Lingula as a disaster taxon. Palaios 16:95–101CrossRefGoogle Scholar
  106. Schubert JK, Bottjer DJ (1992) Early Triassic stromatolites as post-mass extinction disaster forms. Geology 20:883–886CrossRefGoogle Scholar
  107. Schubert JK, Bottjer DJ (1995) Aftermath of the Permian–Triassic mass extinction event: paleoecology of Lower Triassic carbonates in the western USA. Palaeogeogr Palaeoclimatol Palaeoecol 116:1–39CrossRefGoogle Scholar
  108. Seilacher A (1963) Lebensspuren und Salinitätsfazies. Fortschr Geol Rheinl Westfal 10:81–94Google Scholar
  109. Song H, Wignall PB, Chu D, Tong J, Sun Y, Song H, He W, Tian L (2014) Anoxia/high temperature double whammy during the Permian–Triassic marine crisis and its aftermath. Sci Rep 4:4132CrossRefGoogle Scholar
  110. Stewart JH, Poole FG, Wilson RF (1972) Stratigraphy and origin of the Triassic Moenkopi Formation and related strata in the Colorado Plateau region. US Geol Surv Prof Pap 691:195Google Scholar
  111. Sun Y, Joachimski MM, Wignall PB, Yan C, Chen Y, Jiang H, Wang L, Lai X (2012) Lethally hot temperatures during the Early Triassic greenhouse. Science 338:366–370CrossRefGoogle Scholar
  112. Szmuc EJ, Osgood RG, Meinke DW (1977) Synonymy of the ichnogenus Lingulichnites Szmuc, E.J., Osgood, R.G., and Meinke, D.W. 1976, with Lingulichnus Hakes, 1976. Lethaia 10:106CrossRefGoogle Scholar
  113. Tang H, Kershaw S, Liu H, Tan X, Li F, Hu G, Huang C, Wang L, Lian C, Li L, Yang X (2017) Permian–Triassic boundary microbialites (PTBMs) in southwest China: implications for paleoenvironment reconstruction. Facies 63:2CrossRefGoogle Scholar
  114. Thomazo C, Vennin E, Brayard A, Bour I, Mathieu O, Elmeknassi S, Olivier N, Escarguel G, Bylund KG, Jenks J, Stephen DA, Fara E (2016) A diagenetic control on the Early Triassic Smithian–Spathian carbon isotopic excursions recorded in the marine settings of the Thaynes Group (Utah, USA). Geobiology 14:220–236.  https://doi.org/10.1111/gbi.12174 CrossRefGoogle Scholar
  115. Tomescu AM, Klymiuk AA, Matsunaga KK, Bippus AC, Shelton GW (2016) Microbes and the fossil record: selected topics in paleomicrobiology. Their world: a diversity of microbial environments. Springer International Publishing, Switzerland, pp 69–169CrossRefGoogle Scholar
  116. Twitchett RJ, Krystyn L, Baud A, Wheeley JR, Richoz S (2004) Rapid marine recovery after the end-Permian mass-extinction event in the absence of marine anoxia. Geology 32:805–808CrossRefGoogle Scholar
  117. Vennin E, Olivier N, Brayard A, Bour I, Thomazo C, Escarguel G, Fara E, Bylund KG, Jenks JF, Stephen DA, Hofmann R (2015) Microbial deposits in the aftermath of the end-Permian mass extinction: a diverging case from the Mineral Mountains (Utah, USA). Sedimentology 62:753–792CrossRefGoogle Scholar
  118. Wignall PB, Twitchett RJ (1996) Oceanic anoxia and the end Permian mass extinction. Science 272:1155CrossRefGoogle Scholar
  119. Woods AD (2014) Assessing Early Triassic paleoceanographic conditions via unusual sedimentary fabrics and features. Earth Sci Rev 137:6–18CrossRefGoogle Scholar
  120. Yang H, Chen ZQ, Wang Y, Tong J, Song H, Chen J (2011) Composition and structure of microbialite ecosystems following the end-Permian mass extinction in South China. Palaeogeogr Palaeoclimatol Palaeoecol 308:111–128CrossRefGoogle Scholar
  121. Yang H, Chen ZQ, Wang Y, Ou W, Liao W, Mei X (2015) Palaeoecology of microconchids from microbialites near the Permian–Triassic boundary in South China. Lethaia 48:497–508CrossRefGoogle Scholar
  122. Zonneveld JP, Pemberton SG (2003) Ichnotaxonomy and behavioral implications of lingulide-derived trace fossils from the Lower and Middle Triassic of Western Canada. Ichnos 10:25–39CrossRefGoogle Scholar
  123. Zonneveld JP, Beatty TW, Pemberton SG (2007) Lingulide brachiopods and the trace fossil Lingulichnus from the Triassic of western Canada: implications for faunal recovery after the end-Permian mass extinction. Palaios 22:74–97CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Nicolas Olivier
    • 1
  • Emmanuel Fara
    • 2
  • Emmanuelle Vennin
    • 2
  • Kevin G. Bylund
    • 3
  • James F. Jenks
    • 4
  • Gilles Escarguel
    • 5
  • Daniel A. Stephen
    • 6
  • Nicolas Goudemand
    • 7
  • Dawn Snyder
    • 8
  • Christophe Thomazo
    • 2
  • Arnaud Brayard
    • 2
  1. 1.Université Clermont Auvergne, CNRS, Laboratoire Magmas et VolcansClermont-FerrandFrance
  2. 2.Biogéosciences, UMR 6282, CNRS, Université Bourgogne Franche-ComtéDijonFrance
  3. 3.Spanish ForkUSA
  4. 4.West JordanUSA
  5. 5.Université de Lyon, Laboratoire d’Ecologie des Hydrosystèmes Naturels et Anthropisés, UMR CNRS 5023, Université Claude Bernard Lyon 1, ENTPEVilleurbanneFrance
  6. 6.Department of Earth ScienceUtah Valley UniversityOremUSA
  7. 7.Université de Lyon, ENS de Lyon, CNRS, Université Claude Bernard Lyon 1, Institut de Génomique Fonctionnelle de Lyon, UMR 5242Lyon Cedex 07France
  8. 8.KatyUSA

Personalised recommendations