Investigating the kinematics of the unstable slope of Barberà de la Conca (Catalonia, Spain) and the effects on the exposed facilities by GBSAR and multi-source conventional monitoring


The paper presents a multi-source approach tailored for the analysis of ground movements affecting the village of Barberà de la Conca (Tarragona, Catalonia, Spain), where cracks on the ground and damage of different severity to structures and infrastructure was recorded. For this purpose, monitoring of ground displacements performed by topographic survey, geotechnical monitoring and remote sensing techniques (ground-based synthetic aperture radar, GBSAR) are combined with multi-temporal damage surveys and monitoring of cracks (crackmeters) to get an insight into the kinematics of the urban slope. The obtained results highlight the correspondence between the monitoring data and the effects on the exposed facilities induced by ground displacements, which seem to occur predominantly in the horizontal plane with diverging directions (northward and southward) from the main ground fracture crossing the centre of the village. The case study stands as a further contribution to fostering this kind of integrated approaches that via cross-validations can improve data reliability as well as enrich datasets for slope instability recognition and analysis, which are crucial to plan risk mitigation works.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. Alonso EE, Gens A, Berdugo I, Romero E (2005) Expansive behaviour of a sulphated clay in a railway tunnel. Proceedings of the 16th international conference on soils mechanics and geotechnical engineering, Millpress, Rottherdam, vol. 3, pp. 1583–1586

  2. Antronico L, Borrelli L, Peduto D, Fornaro G, Gullà G, Paglia L, Zeni G (2013) Conventional and innovative techniques for the monitoring of displacements in landslide affected area. In: Margottini C., Canuti P, Sassa K (Eds.) Landslide science and practice—early warning, instrumentation and monitoring. Springer—vol. 2, pp. 125–131

  3. Borrelli L, Nicodemo G, Ferlisi S, Peduto D, Di Nocera S, Gullà G (2018) Geology, slow-moving landslides, and damages to buildings in the Verbicaro area (north-western Calabria region, southern Italy). J Maps 14(2):32–44.

    Article  Google Scholar 

  4. Burland JB, Broms BB, De Mello VFB (1977) Behaviour of foundations and structures. SOA Report, Proc of 9th Int Conf on Soil Mechanics and Foundations Engineering, Tokyo - vol. 2, pp. 495–546

  5. Calò F, Ardizzone F, Castaldo R, Lollino P, Tizzani P, Guzzetti F, Lanari L, Angeli M-C, Pontoni F, Manunta M (2014) Enhanced landslide investigations through advanced DInSAR techniques: the Ivancich case study, Assisi, Italy. Remote Sens Environ 142:69–82

    Article  Google Scholar 

  6. Carlà T, Tofani V, Lombardi L, Raspini F, Bianchini S, Bertolo D, Thuegaz P, Casagli N (2019) Combination of GNSS, satellite InSAR, and GBInSAR remote sensing monitoring to improve the understanding of a large landslide in high alpine environment. Geomorphology 335:62–75.

    Article  Google Scholar 

  7. Cascini L, Peduto D, Pisciotta G, Arena L, Ferlisi S, Fornaro G (2013) The combination of DInSAR and facility damage data for the updating of slow-moving landslide inventory maps at medium scale. Nat Hazards Earth Syst Sci 13:1527–1549

    Article  Google Scholar 

  8. Colesanti C, Wasowski J (2006) Investigating landslides with spaceborne synthetic aperture radar (SAR) interferometry. Eng Geol 88:173–199

    Article  Google Scholar 

  9. Corominas J, van Westen C, Frattini P, Cascini L, Malet JP, Fotopoulou S, Catani F, Van Den Eeckhaut M, Mavrouli O, Agliardi F, Pitilakis K, Winter MG, Pastor FS, Tofani V, Hervás J, Smith JT (2014) Recommendations for the quantitative analysis of landslide risk. Bull Eng Geol Environ 73(2):209–263

    Google Scholar 

  10. Crosetto M, Monserrat O, Cuevas M, Crippa B (2011) Spaceborne differential SAR interferometry: data analysis tools for deformation measurement. Remote Sens 3:305–318

    Article  Google Scholar 

  11. Crosetto M, Monserrat O, Cuevas-González M, Devanthéry N, Crippa B (2016) Persistent Scatterer interferometry: a review. ISPRS J Photogramm Remote Sens 115:78–89

    Article  Google Scholar 

  12. De Novellis V, Castaldo R, Lollino P, Manunta M, Tizzani P (2016) Advanced three-dimensional finite element modeling of a slow landslide through the exploitation of DInSAR measurements and in situ surveys. Remote Sens 8:670.

    Article  Google Scholar 

  13. Del Soldato M, Riquelme A, Bianchini S, Tomàs R, Di Martire D, De Vita P, Moretti S, Calcaterra D (2018) Multisource data integration to investigate one century of evolution for the Agnone landslide (Molise, southern Italy). Landslides 15:2113–2128

    Article  Google Scholar 

  14. Del Soldato M, Solari L, Poggi F, Raspini F, Tomás R, Fanti R, Casagli N (2019) Landslide-induced damage probability estimation coupling InSAR and field survey data by fragility curves. Remote Sens 11:1486.

    Article  Google Scholar 

  15. Di Maio C, Fornaro G, Gioia D, Reale D, Schiattarella M, Vassallo R (2018) In situ and satellite long-term monitoring of the Latronico landslide, Italy: displacement evolution, damage to buildings, and effectiveness of remedial works. Eng Geol 245:218–235.

    Article  Google Scholar 

  16. Dick GJ, Eberhardt E, Cabrejo-Liévano AG, Stead D, Rose ND (2015) Development of an early-warning time-of-failure analysis methodology for open-pit mine slopes utilizing ground-based slope stability radar monitoring data. Can Geotech J 52(4):515–529.

    Article  Google Scholar 

  17. Fell R, Corominas J, Bonnard C, Cascini L, Leroi E, Savage WZ, on behalf of the JTC-1 Joint Technical Committee on Landslides and Engineered Slopes (2008) Guidelines for landslide susceptibility, hazard and risk zoning for land use planning. Eng Geol 102(3–4):85–98

    Article  Google Scholar 

  18. Ferlisi S, Peduto D, Gullà G, Nicodemo G, Borrelli L, Fornaro G (2015). The use of DInSAR data for the analysis of building damage induced by slow-moving landslides. In: Lollino G, Giordan D, Crosta GB, Corominas J, Azzam R, Wasowski J, Sciarra N (Eds), Engineering Geology for Society and Territory – Landslide Processes, © Springer International Publishing – Vol. 2, pp. 1835–1839,

  19. Ferlisi S, Gullà G, Nicodemo G, Peduto D (2019) A multi-scale methodological approach for slow-moving landslide risk mitigation in urban areas, southern Italy. Euro-Mediterr J Environ Integr 4:20.

  20. Ferrigno F, Gigli G, Fanti R, Intrieri E, Casagli N (2017) GB-InSAR monitoring and observational method for landslide emergency management: the Montaguto earthflow (AV, Italy). Nat Hazards Earth Syst Sci 17(6):845–860

    Article  Google Scholar 

  21. Frattini P, Crosta GB, Rossini M, Allievi J (2018) Activity and kinematic behaviour of deep-seated landslides from PS-InSAR displacement rate measurements. Landslides 15(6):1053–1070.

    Article  Google Scholar 

  22. Gullà G, Peduto D, Borrelli L, Antronico L, Fornaro G (2017) Geometric and kinematic characterization of landslides affecting urban areas: the Lungro case study (Calabria, southern Italy). Landslides 14(1):171–188

    Article  Google Scholar 

  23. Hanssen R (2001) Radar interferometry. Kluwer Academic Publishers, Dordrecht (The Netherlands), pp. 308, doi:, ISBN: 978-0-7923-6945-5

  24. Iannini L, Guarnieri AM (2011) Atmospheric phase screen in ground-based radar: statistics and compensation. IEEE Geosci Remote Sens Lett 8(3):537–541

    Article  Google Scholar 

  25. ICGC (2011) Caracterització geofísica del subsòl de Barberà de la Conca, estudi de la zona afectada per esquerdes GA-007/11 December 2011. (In Catalan)

  26. ICGC (2012) Internal report Informe sobre l’estat actual dels treballs d’investigació arran de les esquerdes detectades al llarg del turó de l’església de Santa Maria. Barberà de la Conca (Conca de Barberà). Vol. 1–2. AP-007/12. February 2012. (In Catalan)

  27. ICGC (2013) Barberà de la Conca (Conca de Barberà) Informe de Síntesi 2012. AP-006/13. January 2013. (In Catalan)

  28. ICGC (2015a) Caracterització geotècnica pel projecte de construcció d’un mur al carrer Valentí Almirall (Àmbit 1) del municipi de Barberà de la Conca. AP-019/15. April 2015. (In Catalan)

  29. ICGC (2015b) Caracterització geotècnica pel projecte de construcció de 3 murs entre els carrers Bruc i Sant Victorià (Àmbit 2) del municipi de Barberà de la Conca. AP-020/15. April 2015. (In Catalan)

  30. ICGC (2015c) Caracterització geotècnica pel projecte de construcció del mur sud de l’església de Santa Maria (Àmbit 3) del municipi de Barberà de la Conca. AP-021/15. April 2015. (In Catalan)

  31. ICGC (2018) Informe mensual d’auscultació del mes de desembre de 2017. Barberà de la Conca (Conca de Barberà) AP-0089/17 January 2018. (In Catalan)

  32. IDESCAT (2020) Institut d'Estadística de Catalunya. (Last update: 02 March 2020)

  33. Iglesias R, Fabregas X, Aguasca A, Mallorqui JJ, Lopez-Martinez C, Gili JA, Corominas J (2013) Atmospheric phase screen compensation in ground-based SAR with a multiple-regression model over mountainous regions. IEEE Trans Geosci Remote Sens 99:1–14

    Google Scholar 

  34. Janeras M, Marturià J, Jara JA, Buxó P (2017) Monitoratge del moviment del terreny en la gestió dels riscos geològics. RCG-Revista Catalana de Geografia, vol. (IV)XXII, n. 57, (In Catalan)

  35. Leva D, Nico G, Tarchi D, Fortuny J, Sieber AJ (2003) Temporal analysis of a landslide by means of a ground-based SAR interferometer. IEEE Trans Geosci Remote Sens 41:745–752

    Article  Google Scholar 

  36. Leva D, Rivolta C, Binda Rossetti I, Kuzuoka S, Mizuno T (2005) Using a ground based interferometric synthetic aperture radar (GBinSAR) sensor to monitor a landslide in Japan. Proc. of IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2005), 6:4096–4099

  37. Luzi G, Pieraccini M, Mecatti D, Noferini L, Guidi G, Moia F, Atzeni C (2004) Ground-based radar interferometry for landslides monitoring: atmospheric and instrumental decorrelation sources on experimental data. IEEE Trans Geosci Remote Sens 42(11):2454–2466.

    Article  Google Scholar 

  38. Luzi G, Pieraccini M, Mecatti D, Noferini L, Macaluso G, Galgaro A, Atzeni C (2006) Advances in ground-based microwave interferometry for landslide survey: a case study. Int J Remote Sens 27(12):2331–2350

    Article  Google Scholar 

  39. Mansour MF, Morgenstern NR, Martin CD (2011) Expected damage from displacement of slow-moving slides. Landslide 8(1):117–131

    Article  Google Scholar 

  40. Monserrat O, Crosetto M, Luzi G (2014) A review of ground-based SAR interferometry for deformation measurement. ISPRS J Photogramm Remote Sens 93:40–48

    Article  Google Scholar 

  41. Nappo N, Peduto D, Mavrouli O, van Westen C, Gullà G (2019) Slow-moving landslide interacting with the road network: analysis of damage using ancillary data, in situ surveys and multi-source monitoring data. Eng Geol 260:105244.

    Article  Google Scholar 

  42. Nicodemo G, Peduto D, Ferlisi S, Gullà G, Borrelli L, Fornaro G, Reale D (2017) Analysis of building vulnerability to slow-moving landslides via A-DInSAR and damage survey data. In: Mikos M, Tiwari B., Yin Y. and Sassa K. (eds), © 2017 Springer International Publishing AG 2017, Advancing Culture of Living with Landslides - Proceedings of the 4th World Landslide Forum – WLF 2017, Ljubljana, Slovenia, may 29 – June 02, 2017, pp. 889-907,

  43. Nicodemo G, Peduto D, Ferlisi S, Gullà G, Reale D, Fornaro G (2018) DInSAR data integration in vulnerability analysis of buildings exposed to slow-moving landslides. Proc. of IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2018), Valentia (Spain), 22–27 July, 2018, pp. 6111–6114,

  44. Nicodemo G, Ferlisi S, Peduto D, Aceto L, Gullà G (2020) Damage to masonry buildings interacting with slow-moving landslides: a numerical analysis. In: Calvetti F. et al. (eds), Proceedings of the VII Italian conference of researchers in geotechnical engineering – CNRIG – Lecco, Italy 3–5 July, 2019, © springer nature Switzerland AG 2020, LNCE 40, pp. 52–61,

  45. Noferini L, Pieraccini M, Mecatti D, Macaluso G, Atzeni C (2005) Long term and slide monitoring by ground based SAR interferometer. Int J Remote Sens 27:1893–1905

    Article  Google Scholar 

  46. Noviello C, Verde S, Zamparelli V, Fornaro G, Pauciullo A, Reale D, Nicodemo G, Ferlisi S, Gullà G, Peduto D (2020) Monitoring buildings at landslide risk with SAR: a methodology based on the use of multipass interferometric data. IEEE Geosci Remote Sens Mag 8(1):91–119.

    Article  Google Scholar 

  47. Peduto D, Borrelli L, Antronico L, Gullà G, Fornaro G (2016a). An integrated approach for landslide characterization in a historic Centre. In: Aversa S., Cascini L., Picarelli L., Scavia C. (Eds.), landslides and engineered slopes. Experience, theory and practice. Proc. of the 12th Int. Symp. on landslides, CRC press/Balkema. vol. 3, 1575–1581

  48. Peduto D, Pisciotta G, Nicodemo G, Arena L, Ferlisi S, Gullà G, Borrelli L, Fornaro G, Reale D (2016b) A procedure for the analysis of building vulnerability to slow-moving landslides. In: Daponte P., Simonelli A.L. (Eds). Proc. of the 1st IMEKO TC4, Int. Workshop on Metrology for Geotechnics – Benevento, Italy, March 17–18, 2016, pp. 248–254

  49. Peduto D, Ferlisi S, Nicodemo G, Reale D, Gullà G (2017) Empirical fragility and vulnerability curves for buildings exposed to slow-moving landslides at medium and large scales. Landslides 14(6):1993–2007

    Article  Google Scholar 

  50. Peduto D, Nicodemo G, Caraffa M, Gullà G (2018) Quantitative analysis of consequences induced by slow-moving landslides to masonry buildings: a case study. Landslides 15(10):2017–2030

    Article  Google Scholar 

  51. Peduto D, Nicodemo G, Crosetto M, Cuevas-Gonzáles M (2019) Analysis of damage to buildings in urban centres on unstable slopes via TerraSAR-X PSI data: the case study of El Papiol town (Spain). IEEE Geosci Remote Sens Lett 16(11):1706–1710.

    Article  Google Scholar 

  52. Sass I, Burbaum U (2010) Damage to the historic town of Staufen (Germany) caused by geothermal drillings through anhydrite-bearing formations. Acta Carsologica 39/2, 233–245, POSTOJNA

  53. Solari L, Del Soldato M, Raspini F, Barra A, Bianchini S, Confuorto P, Casagli N, Crosetto M (2020) Review of satellite interferometric applications for landslides detection in Italy. Remote Sens 12(8):1351.

    Article  Google Scholar 

  54. Tofani V, Raspini F, Catani F, Casagli N (2013) Persistent Scatterer interferometry (PSI) technique for landslide characterization and monitoring. Remote Sens 5:1045–1065

    Article  Google Scholar 

  55. Wasowski J, Pisano L (2019) Long-term InSAR, borehole inclinometer, and rainfall records provide insight into the mechanism and activity patterns of an extremely slow urbanized landslide. Landslides 17:445–457.

    Article  Google Scholar 

Download references


This work was carried out within an Erasmus for Traineeship Agreement between the Group of Geotechnical Engineering of Salerno University and CTTC/CERCA. This work has been partially funded by AGAUR, Generalitat de Catalunya, through the Consolidated Research Group RSE, “Remote Sensing” (Ref: 2017-SGR-00729).

Author information



Corresponding author

Correspondence to Gianfranco Nicodemo.



Hereafter, the projection of 3D topographic displacement data along the GBSAR line of sight (LOS) is briefly described. The reader can refer to Fig. 6c.

Considering east (E), north (N) and height (H) of GBSAR position (POS) coordinates:

$$ {POS}_{\left(E,N,\kern0.5em H\right) GBSAR}=\left\{{E}_{POS},{N}_{POS},{H}_{POS}\right\} $$

and east (E), north (N) and height (H) of the i-th topographic point (P) coordinates:

$$ {P}_{\left(E,N,H\right) topographic}=\left\{{E}_P,{N}_P,{H}_P\right\} $$

obtained as difference, in each direction, between the final and initial position of the considered topographic point [EP = EP, f − EP, i; NP = NP, f − NP, i; HP = HP, f − HP, i], the projection of displacement vector of the topographic point \( {\overline{S}}_P=\left\{{S}_E,{S}_N,{S}_H\right\} \) along the GBSAR LOS direction \( {\overline{S}}_{P\_ LOS} \), can be evaluated according to Eq. 3

$$ {\overline{S}}_{P\_ LOS}={\overline{s}}_P\times {\overline{LOS}}_{vers}=\left({S}_E\times {E}_{vers}\right)+\left({S}_N\times {N}_{vers}\right)+\left({S}_H\times {H}_{vers}\right) $$

where the east (E), north (N) and high (H) component of Line of Sight versor \( {\overline{LOS}}_{vers}=\left\{{E}_{vers},{N}_{vers},{H}_{vers}\right\} \) are derived using the Line of Sight versor equation (Eq.4):

$$ {\overline{LOS}}_{VERS}=\frac{\overline{LOS}}{\left\Vert \overline{LOS}\right\Vert }=\frac{\left\{{E}_{LOS},{N}_{LOS},{H}_{LOS}\right\}}{\sqrt{{E_{LOS}}^2+{N_{LOS}}^2+{H_{LOS}}^2}} $$

in which the Line of Sight vector components \( \overline{LOS}=\left\{{E}_{LOS},{N}_{LOS},{H}_{LOS}\right\} \) are evaluated using the Line of Sight equation (Eq.5):

$$ \overline{LOS}=\left({E}_P-{E}_{POS}\right)\ast \hat{i}+\left({N}_P-{N}_{POS}\right)\ast \hat{j}+\left({H}_P-{H}_{POS}\right)\ast \hat{k} $$

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Peduto, D., Oricchio, L., Nicodemo, G. et al. Investigating the kinematics of the unstable slope of Barberà de la Conca (Catalonia, Spain) and the effects on the exposed facilities by GBSAR and multi-source conventional monitoring. Landslides 18, 457–469 (2021).

Download citation


  • Ground movements
  • Monitoring
  • Building damage
  • Geotechnical investigations