Old but still active: > 18 ka history of rock slope failures affecting a flysch anticline

Abstract

The Czech part of the Outer Western Carpathians (COWC) formed by flysch rocks is among the most landslide-prone areas in Europe. Recent LiDAR-based inventory mapping reveals that the area of the COWC encompasses more than 13,500 landslides, with some geological domains exhibiting > 20% of the surface area covered by landslides. Although mass movements represent crucial geomorphic agents in the COWC, their timing and especially lifespan remain elusive. In this study, we focused on rockslides affecting the flanks of the flysch anticline developed within Paleogene sandstones. The area (“Hradisko” ridge) is well known as the most extensive rock city in the COWC. Structural-geological investigation, kinematic analysis and the application of near-surface geophysics (ERT, GPR and seismic refraction) suggest that rockslides accompanied by toppling and lateral spreads are predisposed by the architecture of bedding planes, joints and inherited faults cross-cutting the anticlinal ridge. Based on 10Be exposure dating of five scarps and rockslide boulders (a total of 25 cosmogenic-dated samples), we were able to reconstruct the long-term history of rock slope failures. Although the obtained ages of headscarp exposures reveal consistent patterns suggesting major mass movement phases at ~ 18 ka and ~ 12 ka, the interpretation of boulder exposure ages is ambiguous. The study area has not been affected by catastrophic slope failure in historic times, but dendrogeomorphic analysis reveals surprisingly strong tree ring signals of mass movements within the last 150 years. These findings suggest that progressive failure is developing within some parts of the rockslide and/or slope portions above the major scarp. We conclude the following: (1) some rockslide spots within the COWC might express a very long history, encompassing the full Late Glacial–Holocene Period; (2) major mass movement activity in the study site temporally coincided with the major climatic changes; (3) rockslides with a very long history still represent potential hazards, although evidence of their active movement is not detected by standard geomorphic mapping techniques and (4) dating of the scarps should be preferred as even a higher number of boulders might be unreliable.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Akçar N, Deline P, Ivy-Ochs S, Alfimov V, Hajdas I, Kubik PW, Christl M, Schlüchter C (2012) The AD 1717 rock avalanche deposits in the upper Ferret Valley (Italy): a dating approach with cosmogenic 10Be. J Quaternary Sci 27:383–392. https://doi.org/10.1002/jqs.1558

    Article  Google Scholar 

  2. Arnold M, Merchel S, Bourlès DL, Braucher R, Benedetti L, Finkel RC, Aumaître G, Gottdang A, Klein M (2010) The French accelerator mass spectrometry facility ASTER: improved performance and developments. Nucl Instrum Methods Phys Res, Sect B 268:1954–1959. https://doi.org/10.1016/j.nimb.2010.02.107

    Article  Google Scholar 

  3. Azzoni A, Chiesa S, Frassoni A, Govi M (1992) The Valpola landslide. Eng Geol 33:59–70. https://doi.org/10.1016/0013-7952(92)90035-W

    Article  Google Scholar 

  4. Badger TC (2002) Fracturing within anticlines and its kinematic control on slope stability. Environ Eng Geosci 8:19–33. https://doi.org/10.2113/gseegeosci.8.1.19

    Article  Google Scholar 

  5. Ballantyne CK (1998) Age and significance of mountain-top detritus. Permafr Periglac Process 9:327–345. https://doi.org/10.1002/(SICI)1099-1530(199810/12)9:4<327::AID-PPP298>3.0.CO;2-9

    Article  Google Scholar 

  6. Ballantyne CK, Stone JO (2004) The Beinn Alligin rock avalanche, NW Scotland: cosmogenic 10Be dating, interpretation and significance. The Holocene 14:448–453. https://doi.org/10.1191/0959683604hl720rr

    Article  Google Scholar 

  7. Baroň I (2007) Výsledky datování hlubokých svahových deformací v oblasti Vsetínska a Frýdeckomístecka. Geologické výzkumy na Moravě a ve Slezsku v roce 2006(12):2006–2008

    Google Scholar 

  8. Baroň I, Cílek V, Krejčí O, Melichar R, Hubatka F (2004) Structure and dynamics of deep-seated slope failures in the Magura Flysch Nappe, outer Western Carpathians (Czech Republic). Nat Hazards Earth Syst Sci 4:549–562. https://doi.org/10.5194/nhess-4-549-2004

    Article  Google Scholar 

  9. Barton N (2007) Rock quality, seismic velocity, attenuation and anisotropy. Taylor & Francis e-Library, Taylor & Francis/Balkema

    Google Scholar 

  10. Bigot-Cormier F, Braucher R, Bourlès D et al (2005) Chronological constraints on processes leading to large active landslides. Earth Planet Sci Lett 235:141–150. https://doi.org/10.1016/j.epsl.2005.03.012

    Article  Google Scholar 

  11. Borchers B, Marrero S, Balco G, Caffee M, Goehring B, Lifton N, Nishiizumi K, Phillips F, Schaefer J, Stone J (2016) Geological calibration of spallation production rates in the CRONUS-Earth project. Quat Geochronol 31:188–198. https://doi.org/10.1016/j.quageo.2015.01.009

    Article  Google Scholar 

  12. Braucher R, Merchel S, Borgomano J, Bourlès DL (2011) Production of cosmogenic radionuclides at great depth: a multi element approach. Earth Planet Sci Lett 309:1–9. https://doi.org/10.1016/j.epsl.2011.06.036

    Article  Google Scholar 

  13. Braucher R, Guillou V, Bourlès DL, Arnold M, Aumaître G, Keddadouche K, Nottoli E (2015) Preparation of ASTER in-house 10Be/9Be standard solutions. Nucl Instrum Methods Phys Res, Sect B 361:335–340. https://doi.org/10.1016/j.nimb.2015.06.012

    Article  Google Scholar 

  14. Břežný M, Pánek T, Lenart J, Zondervan A, Braucher R (2018a) 10Be dating reveals pronounced Mid-to Late Holocene activity of deep-seated landslides in the highest part of the Czech Flysch Carpathians. Quat Sci Rev 195:180–194. https://doi.org/10.1016/j.quascirev.2018.07.030

    Article  Google Scholar 

  15. Břežný M, Pánek T, Lenart J, Grygar R, Tábořík P, McColl ST (2018b) Sackung and enigmatic mass movement folds on a structurally-controlled mountain ridge. Geomorphology 322:175–187. https://doi.org/10.1016/j.geomorph.2018.09.004

    Article  Google Scholar 

  16. Brideau M-A, Pedrazzini A, Stead D, Froese C, Jaboyedoff M, van Zeyl D (2011) Three-dimensional slope stability analysis of South Peak, Crowsnest Pass, Alberta, Canada. Landslides 8:139–158. https://doi.org/10.1007/s10346-010-0242-8

    Article  Google Scholar 

  17. Chigira M, Wu X, Inokuchi T, Wang G (2010) Landslides induced by the 2008 Wenchuan earthquake, Sichuan, China. Geomorphology 118:225–238. https://doi.org/10.1016/j.geomorph.2010.01.003

    Article  Google Scholar 

  18. Chmeleff J, von Blanckenburg F, Kossert K, Jakob D (2010) Determination of the 10Be half-life by multicollector ICP-MS and liquid scintillation counting. Nucl Instrum Methods Phys Res, Sect B 268:192–199. https://doi.org/10.1016/j.nimb.2009.09.012

    Article  Google Scholar 

  19. Corona C, Lopez Saez J, Stoffel M (2014) Defining optimal sample size, sampling design and thresholds for dendrogeomorphic landslide reconstructions. Quat Geochronol 22:72–84. https://doi.org/10.1016/j.quageo.2014.02.006

    Article  Google Scholar 

  20. Crosta GB, Clague JJ (2009) Dating, triggering, modelling, and hazard assessment of large landslides. Geomorphology 103:1–4. https://doi.org/10.1016/j.geomorph.2008.04.007

    Article  Google Scholar 

  21. Czech Geological Survey (2019) Geological map of the Czech republic 1 : 50 000,(availaible from: https://mapy.geology.cz/geocr50/)

  22. Dabkowski J, Frodlová J, Hájek M, Hájková P, Petr L, Fiorillo D, Dudová L, Horsák M (2019) A complete Holocene climate and environment record for the Western Carpathians (Slovakia) derived from a tufa deposit. The Holocene 29:493–504. https://doi.org/10.1177/0959683618816443

    Article  Google Scholar 

  23. Dorn RI, Phillips FM (1991) Surface exposure dating: review and critical evaluation. Phys Geogr 12:303–333. https://doi.org/10.1080/02723646.1991.10642436

    Article  Google Scholar 

  24. Froude MJ, Petley DN (2018) Global fatal landslide occurrence from 2004 to 2016. Nat Hazards Earth Syst Sci 18:2161–2181. https://doi.org/10.5194/nhess-18-2161-2018

    Article  Google Scholar 

  25. Geertsema M, Clague JJ, Schwab JW, Evans SG (2006) An overview of recent large catastrophic landslides in northern British Columbia, Canada. Eng Geol 83:120–143. https://doi.org/10.1016/j.enggeo.2005.06.028

    Article  Google Scholar 

  26. Hagedoorn JG (1959) The plus-minus method of interpreting seismic refraction sections. Geophys Prospect 7:158–182. https://doi.org/10.1111/j.1365-2478.1959.tb01460.x

    Article  Google Scholar 

  27. Hilger P, Gosse JC, Hermanns RL (2019) How significant is inheritance when dating rockslide boulders with terrestrial cosmogenic nuclide dating?—a case study of an historic event. Landslides 16:729–738. https://doi.org/10.1007/s10346-018-01132-0

    Article  Google Scholar 

  28. Hippolyte J-C, Bourlès D, Braucher R, Carcaillet J, Léanni L, Arnold M, Aumaitre G (2009) Cosmogenic 10Be dating of a sackung and its faulted rock glaciers, in the Alps of Savoy (France). Geomorphology 108:312–320. https://doi.org/10.1016/j.geomorph.2009.02.024

    Article  Google Scholar 

  29. Holmes RL (1994) Dendrochronology program library – user manual. Laboratory of Tree-Ring Research, Tuscon

    Google Scholar 

  30. Humair F, Pedrazzini A, Epard J-L, Froese CR, Jaboyedoff M (2013) Structural characterization of Turtle Mountain anticline (Alberta, Canada) and impact on rock slope failure. Tectonophysics 605:133–148. https://doi.org/10.1016/j.tecto.2013.04.029

    Article  Google Scholar 

  31. Ivy-Ochs S, Kober F (2008) Surface exposure dating with cosmogenic nuclides. Quaternary Sci J 57:179–209

    Google Scholar 

  32. Jaboyedoff M, Penna I, Pedrazzini A, Baroň I, Crosta GB (2013) An introductory review on gravitational-deformation induced structures, fabrics and modeling. Tectonophysics 605:1–12. https://doi.org/10.1016/j.tecto.2013.06.027

    Article  Google Scholar 

  33. Jankovská V, Baroň I, Nývlt D, Krejčí O, Krejčí V (2018) Last Glacial to Holocene vegetation succession recorded in polyphase slope-failure deposits on the Maleník Ridge, Outer Western Carpathians. Quat Int 470:38–52. https://doi.org/10.1016/j.quaint.2017.10.048

    Article  Google Scholar 

  34. Jones PB (1993) Structural geology of the modern Frank slide and ancient Bluff Mountain slide, Crowsnest, Alberta. Bull Can Petrol Geol 41:232–243

    Google Scholar 

  35. Kirchner K, Krejčí O (2002) Slope deformations and their significance for relief development in the middle part of the Outer Western Carpathians in Moravia. Moravian Geographical Reports 10:10–19

    Google Scholar 

  36. Korschinek G, Bergmaier A, Faestermann T, Gerstmann UC, Knie K, Rugel G, Wallner A, Dillmann I, Dollinger G, von Gostomski CL, Kossert K, Maiti M, Poutivtsev M, Remmert A (2010) A new value for the half-life of 10Be by heavy-ion elastic recoil detection and liquid scintillation counting. Nucl Instrum Methods Phys Res, Sect B 268:187–191. https://doi.org/10.1016/j.nimb.2009.09.020

    Article  Google Scholar 

  37. Korup O, Clague JJ, Hermanns RL, Hewitt K, Strom AL, Weidinger JT (2007) Giant landslides, topography, and erosion. Earth Planet Sci Lett 261:578–589. https://doi.org/10.1016/j.epsl.2007.07.025

    Article  Google Scholar 

  38. Korup O, Densmore AL, Schlunegger F (2010) The role of landslides in mountain range evolution. Geomorphology 120:77–90. https://doi.org/10.1016/j.geomorph.2009.09.017

    Article  Google Scholar 

  39. Krejčí O, Baroň I, Bíl M, Jurová Z, Bárta J, Hubatka F, Kašpárek M, Kirchner K, Stach J (2002a) Some examples of deep-seated landslides in the Flysch Belt of the Western Carpathians. In: Rybář J (ed) Landslides: Proceedings of the First European Conference on Landslides. Czech Republic, Prague

    Google Scholar 

  40. Krejčí O, Baroň I, Bil M, Hubatka F, Jurová Z, Kirchner K (2002b) Slope movements in the Flysch Carpathians of eastern Czech Republic triggered by extreme rainfalls in 1997: a case study. Physics and Chemistry of the Earth, Parts A/B/C 27:1567–1576. https://doi.org/10.1016/S1474-7065(02)00178-X

    Article  Google Scholar 

  41. Lenart J, Pánek T, Dušek R (2014) Genesis, types and evolution of crevice-type caves in the flysch belt of the Western Carpathians (Czech Republic). Geomorphology 204:459–476. https://doi.org/10.1016/j.geomorph.2013.08.025

    Article  Google Scholar 

  42. Lenart J, Kašing M, Tábořík P, Piotrowska N, Pawlyta J (2018) The Cyrilka Cave—the longest crevice-type cave in Czechia: structural controls, genesis, and age. Int J Speleol 47:379–392. https://doi.org/10.5038/1827-806X.47.3.2210

    Article  Google Scholar 

  43. Lenhardt WA, Švancara J, Melichar P, Pazdírková J, Havíř J, Sýkorová Z (2007) Seismic activity of the Alpine-Carpathian-Bohemian Massif region with regard to geological and potential field data. Geol Carpath 58:397–412

    Google Scholar 

  44. Loke MH, Barker RD (1996) Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method1. Geophys Prospect 44:131–152. https://doi.org/10.1111/j.1365-2478.1996.tb00142.x

    Article  Google Scholar 

  45. Margielewski W (2003) Late glacial-Holocene palaeoenvironmental changes in the Western Carpathians: case studies of landslide forms and deposits. Folia Quaternaria 74

  46. Margielewski W (2006a) Structural control and types of movements of rock mass in anisotropic rocks: case studies in the Polish Flysch Carpathians. Geomorphology 77:47–68. https://doi.org/10.1016/j.geomorph.2006.01.003

    Article  Google Scholar 

  47. Margielewski W (2006b) Records of the Late glacial - Holocene palaeoenvironmental changes in landslide forms and deposits of the Beskid Makowski and Beskid Wyspowy Mts. area (Polish outer Carpathians). Folia Quaternaria 76:149–149

    Google Scholar 

  48. Margielewski W, Urban J (2017) Gravitationally induced non-karst caves: tectonic and morphological constrains, classification, and dating; Polish Flysch Carpathians case study. Geomorphology 296:160–181. https://doi.org/10.1016/j.geomorph.2017.08.018

    Article  Google Scholar 

  49. Merchel S, Mrak I, Braucher R, Benedetti L, Repe B, Bourlès DL, Reitner JM (2014) Surface exposure dating of the Veliki vrh rock avalanche in Slovenia associated with the 1348 earthquake. Quat Geochronol 22:33–42. https://doi.org/10.1016/j.quageo.2014.02.002

    Article  Google Scholar 

  50. North Greenland Ice Core Project members (2004) North Greenland Ice Core Project Oxygen Isotope Data. IGBP PAGES/World Data Center for Paleoclimatology Data Contribution Series # 2004-059.NOAA/NGDC Paleoclimatology Program, Boulder CO, USA

  51. Pánek T (2015) Recent progress in landslide dating: a global overview. Progress in Physical Geography: Earth and Environment 39:168–198. https://doi.org/10.1177/0309133314550671

    Article  Google Scholar 

  52. Pánek T, Hradecký J, Minár J, Hungr O, Dušek R (2009) Late Holocene catastrophic slope collapse affected by deep-seated gravitational deformation in flysch: Ropice Mountain, Czech Republic. Geomorphology 103:414–429. https://doi.org/10.1016/j.geomorph.2008.07.012

    Article  Google Scholar 

  53. Pánek T, Hradecký J, Smolková V, Šilhán K, Minár J, Zernitskaya V (2010) The largest prehistoric landslide in northwestern Slovakia: chronological constraints of the Kykula long-runout landslide and related dammed lakes. Geomorphology 120:233–247. https://doi.org/10.1016/j.geomorph.2010.03.033

    Article  Google Scholar 

  54. Pánek T, Tábořík P, Klimeš J, Komárková V, Hradecký J, Šťastný M (2011) Deep-seated gravitational slope deformations in the highest parts of the Czech Flysch Carpathians: evolutionary model based on kinematic analysis, electrical imaging and trenching. Geomorphology 129:92–112. https://doi.org/10.1016/j.geomorph.2011.01.016

    Article  Google Scholar 

  55. Pánek T, Smolková V, Hradecký J, Baroň I, Šilhán K (2013) Holocene reactivations of catastrophic complex flow-like landslides in the Flysch Carpathians (Czech Republic/Slovakia). Quat Res 80:33–46. https://doi.org/10.1016/j.yqres.2013.03.009

    Article  Google Scholar 

  56. Pánek T, Hartvich F, Jankovská V, Klimeš J, Tábořík P, Bubík M, Smolková V, Hradecký J (2014a) Large Late Pleistocene landslides from the marginal slope of the Flysch Carpathians. Landslides 11:981–992. https://doi.org/10.1007/s10346-013-0463-8

    Article  Google Scholar 

  57. Pánek T, Smolková V, Hradecký J, Baroň I, Šilhán K (2014b) Corrigendum to “Holocene reactivations of catastrophic complex flow-like landslides in the Flysch Carpathians (Czech Republic/Slovakia)” [Quat. Res. 80 (2013) 33–46]. Quat Res 81:179–179. https://doi.org/10.1016/j.yqres.2013.10.013

    Article  Google Scholar 

  58. Pánek T, Břežný M, Kapustová V, Lenart J, Chalupa V (2019) Large landslides and deep-seated gravitational slope deformations in the Czech Flysch Carpathians: new LiDAR-based inventory. Geomorphology 346:106852. https://doi.org/10.1016/j.geomorph.2019.106852

    Article  Google Scholar 

  59. Pedrazzini A, Jaboyedoff M, Froese CR, Langenberg CW, Moreno F (2011) Structural analysis of Turtle Mountain: origin and influence of fractures in the development of rock slope failures. Geol Soc Lond, Spec Publ 351:163–183. https://doi.org/10.1144/SP351.9

    Article  Google Scholar 

  60. Pedrazzini A, Froese CR, Jaboyedoff M, Hungr O, Humair F (2012) Combining digital elevation model analysis and run-out modeling to characterize hazard posed by a potentially unstable rock slope at Turtle Mountain, Alberta, Canada. Eng Geol 128:76–94. https://doi.org/10.1016/j.enggeo.2011.03.015

    Article  Google Scholar 

  61. Procházková D (1987) Mapa seismických oblastí ČSSR [Map of seismic regions in Czechoslovakia]. Acta Montana 75:313–334

    Google Scholar 

  62. ROCSCIENCE (2018) Dips 7.0 graphical and statistical analysis of orientation data. Rocscience Inc., Toronto

    Google Scholar 

  63. Sanchez G, Rolland Y, Corsini M, Braucher R, Bourlès D, Arnold M, Aumaître G (2010) Relationships between tectonics, slope instability and climate change: cosmic ray exposure dating of active faults, landslides and glacial surfaces in the SW Alps. Geomorphology 117:1–13. https://doi.org/10.1016/j.geomorph.2009.10.019

    Article  Google Scholar 

  64. Sandmeier software (2019) REFLEXW. Sandmeier geophysical research 2019

  65. Schweingruber FH, Eckstein D, Serre-Bachet F, Bräker OU (1990) Identification, presentation and interpretation of event years and pointer years in dendrochronology. Dendrochronologia 8:9–38

    Google Scholar 

  66. Shroder JF (1978) Dendrogeomorphological analysis of mass movement on Table Cliffs Plateau, Utah. Quat Res 9:168–185. https://doi.org/10.1016/0033-5894(78)90065-0

    Article  Google Scholar 

  67. Šilhán K (2017) Evaluation of growth disturbances of Picea abies (L.) Karst. to disturbances caused by landslide movements. Geomorphology 276:51–58. https://doi.org/10.1016/j.geomorph.2016.10.005

    Article  Google Scholar 

  68. Šilhán K, Tichavský R, Škarpich V, Břežný M, Stoffel M (2018) Regional, tree-ring based chronology of landslides in the Outer Western Carpathians. Geomorphology 321:33–44. https://doi.org/10.1016/j.geomorph.2018.08.023

    Article  Google Scholar 

  69. Stead D, Wolter A (2015) A critical review of rock slope failure mechanisms: the importance of structural geology. J Struct Geol 74:1–23. https://doi.org/10.1016/j.jsg.2015.02.002

    Article  Google Scholar 

  70. Stoffel M, Bollschweiler M (2008) Tree-ring analysis in natural hazards research &ndash; an overview. Nat Hazards Earth Syst Sci 8:187–202. https://doi.org/10.5194/nhess-8-187-2008

    Article  Google Scholar 

  71. Stone JO (2000) Air pressure and cosmogenic isotope production. J Geophys Res 105:23753–23759. https://doi.org/10.1029/2000JB900181

    Article  Google Scholar 

  72. Tichavský R, Ballesteros-Cánovas JA, Šilhán K, Tolasz R, Stoffel M (2019) Dry spells and extreme precipitation are the main trigger of landslides in Central Europe. Sci Rep 9:14560. https://doi.org/10.1038/s41598-019-51148-2

    Article  Google Scholar 

  73. Tikhomirov D, Akçar N, Ivy-Ochs S, Alfimov V, Schlüchter C (2014) Calculation of shielding factors for production of cosmogenic nuclides in fault scarps. Quat Geochronol 19:181–193. https://doi.org/10.1016/j.quageo.2013.08.004

    Article  Google Scholar 

  74. Tolasz R, Brázdil R, Bulíř O, et al (2007) Altas podnebí Česka (Climate atlas of Czechia), 1. vydání. Český hydrometeorologický ústav, Universita Palackého, Praha, Olomouc

  75. van Overmeeren RA (2001) Hagedoorn’s plus-minus method: the beauty of simplicity. Geophys Prospect 49:687–696. https://doi.org/10.1111/j.1365-2478.1964.tb01888.x

    Article  Google Scholar 

  76. Wagner J, Demek J, Stráník Z (1990) Jeskyně Moravskoslezských Beskyd a okolí. Česká speleologická společnost, Praha

    Google Scholar 

  77. Westing AH (1965) Formation and function of compression wood in gymnosperms. Bot Rev 31:381–480. https://doi.org/10.1007/BF02859131

    Article  Google Scholar 

  78. Wistuba M, Malik I, Krzemień K, Gorczyca E, Sobucki M, Wrońska-Wałach D, Gawior D (2018) Can low-magnitude earthquakes act as a triggering factor for landslide activity? Examples from the Western Carpathian Mts, Poland. CATENA 171:359–375. https://doi.org/10.1016/j.catena.2018.07.028

    Article  Google Scholar 

  79. Wyllie DC, Mah CW (2004) Rock slope engineering, 4th edn. Spon Press

  80. Zerathe S, Lebourg T, Braucher R, Bourlès D (2014) Mid-Holocene cluster of large-scale landslides revealed in the Southwestern Alps by 36Cl dating. Insight on an Alpine-scale landslide activity. Quat Sci Rev 90:106–127. https://doi.org/10.1016/j.quascirev.2014.02.015

    Article  Google Scholar 

Download references

Acknowledgements

We thank A. Sartégou and L. Léanni for their help in sample preparation and the Cerege ASTER Team (G. Aumaître, D. Bourlès and K. Keddadouche) for their expertise in AMS measurements. The ASTER AMS national facility (CEREGE, Aix-en-Provence) is supported by the INSU/CNRS, the ANR through the “Projets thématiques d’excellence” programme for the “Equipements d’excellence” ASTER-CEREGE action and IRD. Theauthors acknowledge two anonymous reviewers for their constructive comments on an earlier version of the paper.

Funding

This study was conducted within the framework of the Czech Science Foundation, project 17-19-01866S “Ancient landslides: really inactive?” Furthermore, the study was supported by the project of the University of Ostrava (SGS02/Přf/2019-2020).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michal Břežný.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Břežný, M., Pánek, T., Braucher, R. et al. Old but still active: > 18 ka history of rock slope failures affecting a flysch anticline. Landslides 18, 89–104 (2021). https://doi.org/10.1007/s10346-020-01483-7

Download citation

Keywords

  • Rock slope failures
  • Anticlinal ridge
  • Cosmogenic dating
  • Geophysics
  • Flysch Carpathians