Numerical simulation of the 1995 rainfall-induced Fei Tsui Road landslide in Hong Kong: new insights from hydro-mechanically coupled material point method

Abstract

A rainfall-induced landslide case history in Hong Kong, i.e., the Fei Tsui Road landslide on 13 August 1995, is simulated in this study using a two-phase material point method (MPM). With the aid of hydro-mechanically coupled two-phase MPM, the entire process of the landslide case history is simulated, starting from rainfall infiltration, to advancement of wetting front, evolution of pore water pressure spatial distribution, triggering of multiple failure events, and post-failure large deformation of soils. The simulated results agree well with the field observation during the incident in 1995. Two separate failure events (i.e., one major failure occurred about 20 min after a minor failure) observed during the landslide are properly simulated by the two-phase MPM. The simulation also shows an accumulation of perched water that is consistent with a water table of less than 4 m observed during the incident. In addition, new insights into the failure mechanism are obtained from the simulation. The major failure event observed during the landslide is found to contain two different failure modes, one shallow failure and one deep failure. In the previous study, a weak layer of kaolinite-rich altered tuff was believed as a principal reason for the unusually large volume of sliding soil mass. However, the MPM parametric study in the manuscript shows that the weak layer only has a minor effect on the incident.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

References

  1. Alonso EE, Gens A, Delahaye CH (2003) Influence of rainfall on the deformation and stability of a slope in overconsolidated clays: a case study. Hydrogeol J 11:174–192. https://doi.org/10.1007/s10040-002-0245-1

    Article  Google Scholar 

  2. Bandara S, Soga K (2015) Coupling of soil deformation and pore fluid flow using material point method. Comput Geotech 63:199–214. https://doi.org/10.1016/J.COMPGEO.2014.09.009

    Article  Google Scholar 

  3. Bandara S, Ferrari A, Laloui L (2016) Modelling landslides in unsaturated slopes subjected to rainfall infiltration using material point method. Int J Numer Anal Methods Geomech 40:1358–1380. https://doi.org/10.1002/nag.2499

    Article  Google Scholar 

  4. Belytschko T, Liu WK, Moran B (2014) Nonlinear finite elements for continua and structures, 2nd edn. John Wiley & Sons, Chichester, UK

    Google Scholar 

  5. Bordoni M, Meisina C, Valentino R, Lu N, Bittelli M, Chersich S (2015) Hydrological factors affecting rainfall-induced shallow landslides: from the field monitoring to a simplified slope stability analysis. Eng Geol 193:19–37. https://doi.org/10.1016/J.ENGGEO.2015.04.006

    Article  Google Scholar 

  6. Ceccato F, Simonini P (2017) Numerical study of partially drained penetration and pore pressure dissipation in piezocone test. Acta Geotech 12:195–209. https://doi.org/10.1007/s11440-016-0448-6

    Article  Google Scholar 

  7. Chen ZP, Zhang X, Sze KY, Kan L, Qiu XM (2018) V-p material point method for weakly compressible problems. Comput Fluids 176:170–181. https://doi.org/10.1016/J.COMPFLUID.2018.09.005

    Article  Google Scholar 

  8. Cho SE, Lee SR (2002) Evaluation of surficial stability for homogeneous slopes considering rainfall characteristics. J Geotech Geoenvironmental Eng 128:756–763. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:9(756)

    Article  Google Scholar 

  9. Collins BD, Znidarcic D (2004) Stability analyses of rainfall induced landslides. J Geotech Geoenvironmental Eng 130:362–372. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:4(362)

    Article  Google Scholar 

  10. Coombs WM, Charlton TJ, Cortis M, Augarde CE (2018) Overcoming volumetric locking in material point methods. Comput Methods Appl Mech Eng 333:1–21. https://doi.org/10.1016/J.CMA.2018.01.010

    Article  Google Scholar 

  11. Fern EJ, Soga K (2016) The role of constitutive models in MPM simulations of granular column collapses. Acta Geotech 11:659–678. https://doi.org/10.1007/s11440-016-0436-x

    Article  Google Scholar 

  12. Gan JKM, Fredlund DG (1995) Direct shear testing of a Hong Kong soil under various applied matric suctions. GEO Report No. 11. Geotechnical Engineering Office, Hong Kong

  13. Gan JKM, Fredlund DG (2006) Laboratory measurement of the coefficient of permeability functions of selected Hong Kong soils. GEO Report No. 193. Geotechnical Engineering Office, Hong Kong

  14. Griffiths DV, Lane PA (1999) Slope stability analysis by finite elements. Géotechnique 49:387–403. https://doi.org/10.1680/geot.1999.49.3.387

    Article  Google Scholar 

  15. Griffiths DV, Lu N (2005) Unsaturated slope stability analysis with steady infiltration or evaporation using elasto-plastic finite elements. Int J Numer Anal Methods Geomech 29:249–267. https://doi.org/10.1002/nag.413

    Article  Google Scholar 

  16. Ho KKS, Lau JWC (2010) Learning from slope failures to enhance landslide risk management. Q J Eng Geol Hydrogeol 43:33–68. https://doi.org/10.1144/1470-9236/08-006

    Article  Google Scholar 

  17. Irfan TY (1998) Structurally controlled landslides in saprolitic soils in Hong Kong. Geotech Geol Eng 16(3):215–238. https://doi.org/10.1023/A:1008805827178

    Article  Google Scholar 

  18. Iverson RM (2000) Landslide triggering by rain infiltration. Water Resour Res 36:1897–1910. https://doi.org/10.1029/2000WR900090

    Article  Google Scholar 

  19. Jassim I, Stolle D, Vermeer P (2013) Two-phase dynamic analysis by material point method. Int J Numer Anal Methods Geomech 37:2502–2522. https://doi.org/10.1002/nag.2146

    Article  Google Scholar 

  20. Kirk PA, Campbell SDG, Fletcher CJN, Merriman RJ (1997) The significance of primary volcanic fabrics and clay distribution in landslides in Hong Kong. J Geol Soc Lond 154:1009–1019. https://doi.org/10.1144/gsjgs.154.6.1009

    Article  Google Scholar 

  21. Knill J, GEO (2006). Report on the Fei Tsui Road landslide of 13 August 1995. GEO Report No. 188. Geotechnical Engineering Office, Hong Kong

  22. Kwong AKL, Wang M, Lee CF, Law KT (2004) A review of landslide problems and mitigation measures in Chongqing and Hong Kong: similarities and differences. Eng Geol 76:27–39. https://doi.org/10.1016/J.ENGGEO.2004.06.004

    Article  Google Scholar 

  23. Lee LM, Gofar N, Rahardjo H (2009) A simple model for preliminary evaluation of rainfall-induced slope instability. Eng Geol 108:272–285. https://doi.org/10.1016/J.ENGGEO.2009.06.011

    Article  Google Scholar 

  24. Li L, Wang Y (2019) Identification of failure slip surfaces for landslide risk assessment using smoothed particle hydrodynamics. Georisk Assess Manag Risk Eng Syst Geohazards:1–21. https://doi.org/10.1080/17499518.2019.1602877

  25. Li WC, Lee LM, Cai H, Li HJ, Dai FC, Wang ML (2013) Combined roles of saturated permeability and rainfall characteristics on surficial failure of homogeneous soil slope. Eng Geol 153:105–113. https://doi.org/10.1016/J.ENGGEO.2012.11.017

    Article  Google Scholar 

  26. Li WC, Dai FC, Wei YQ, Wang ML, Min H, Lee LM (2016) Implication of subsurface flow on rainfall-induced landslide: a case study. Landslides 13:1109–1123. https://doi.org/10.1007/s10346-015-0619-9

    Article  Google Scholar 

  27. Liu X (2020) Probabilistic landslide simulation: from initiation to post-failure large deformation of soils. PhD thesis, City University of Hong Kong

  28. Liu X, Wang Y, Li DQ (2019) Investigation of slope failure mode evolution during large deformation in spatially variable soils by random limit equilibrium and material point methods. Comput Geotech 111:301–312. https://doi.org/10.1016/J.COMPGEO.2019.03.022

    Article  Google Scholar 

  29. Lu N, Godt J (2008) Infinite slope stability under steady unsaturated seepage conditions. Water Resour Res 44:W11404. https://doi.org/10.1029/2008WR006976

    Article  Google Scholar 

  30. Mast CM, Mackenzie-Helnwein P, Arduino P, Miller GR, Shin W (2012) Mitigating kinematic locking in the material point method. J Comput Phys 231:5351–5373. https://doi.org/10.1016/J.JCP.2012.04.032

    Article  Google Scholar 

  31. Mast CM, Arduino P, Miller GR, Mackenzie-Helnwein P (2014) Avalanche and landslide simulation using the material point method: flow dynamics and force interaction with structures. Comput Geosci 18:817–830. https://doi.org/10.1007/s10596-014-9428-9

    Article  Google Scholar 

  32. Mualem Y (1976) A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour Res 12:513–522. https://doi.org/10.1029/WR012i003p00513

    Article  Google Scholar 

  33. Ng CW., Shi Q (1998) A numerical investigation of the stability of unsaturated soil slopes subjected to transient seepage. Comput Geotech 22:1–28. https://doi.org/10.1016/S0266-352X(97)00036-0

  34. Oh S, Lu N (2015) Slope stability analysis under unsaturated conditions: case studies of rainfall-induced failure of cut slopes. Eng Geol 184:96–103. https://doi.org/10.1016/J.ENGGEO.2014.11.007

    Article  Google Scholar 

  35. Pastor M, Blanc T, Haddad B, Petrone S, Sanchez Morles M, Drempetic V, Issler D, Crosta GB, Cascini L, Sorbino G, Cuomo S (2014) Application of a SPH depth-integrated model to landslide run-out analysis. Landslides 11:793–812. https://doi.org/10.1007/s10346-014-0484-y

    Article  Google Scholar 

  36. Rahardjo H, Ong TH, Rezaur RB, Leong EC (2007) Factors controlling instability of homogeneous soil slopes under rainfall. J Geotech Geoenvironmental Eng 133:1532–1543. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:12(1532)

    Article  Google Scholar 

  37. Rahimi A, Rahardjo H, Leong EC (2010) Effect of hydraulic properties of soil on rainfall-induced slope failure. Eng Geol 114:135–143. https://doi.org/10.1016/J.ENGGEO.2010.04.010

    Article  Google Scholar 

  38. Schrefler BA (1984) The finite element method in soil consolidation (with applications to surface subsidence). PhD thesis, University College of Swansea

  39. Schrefler BA, Scotta R (2001) A fully coupled dynamic model for two-phase fluid flow in deformable porous media. Comput Methods Appl Mech Eng 190:3223–3246. https://doi.org/10.1016/S0045-7825(00)00390-X

    Article  Google Scholar 

  40. Schrefler BA, Zhan X (1993) A fully coupled model for water flow and airflow in deformable porous media. Water Resour Res 29:155–167. https://doi.org/10.1029/92WR01737

    Article  Google Scholar 

  41. Shi B, Zhang Y, Zhang W (2018) Analysis of the entire failure process of the rotational slide using the material point method. Int J Geomech 18:04018092. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001211

    Article  Google Scholar 

  42. Soga K, Alonso E, Yerro A, Kumar K, Bandara S (2016) Trends in large-deformation analysis of landslide mass movements with particular emphasis on the material point method. Géotechnique 66:248–273. https://doi.org/10.1680/jgeot.15.LM.005

    Article  Google Scholar 

  43. Tang CL, Hu JC, Lin ML, Angelier J, Lu CY, Chan YC, Chu HT (2009) The Tsaoling landslide triggered by the Chi-Chi earthquake, Taiwan: insights from a discrete element simulation. Eng Geol 106:1–19

    Article  Google Scholar 

  44. Tsaparas I, Rahardjo H, Toll D., Leong E (2002) Controlling parameters for rainfall-induced landslides. Comput Geotech 29:1–27. https://doi.org/10.1016/S0266-352X(01)00019-2

  45. van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44:892–898. https://doi.org/10.2136/sssaj1980.03615995004400050002x

    Article  Google Scholar 

  46. Wang B, Vardon PJ, Hicks MA (2016) Investigation of retrogressive and progressive slope failure mechanisms using the material point method. Comput Geotech 78:88–98. https://doi.org/10.1016/j.compgeo.2016.04.016

    Article  Google Scholar 

  47. Wang B, Vardon PJ, Hicks MA (2018) Rainfall-induced slope collapse with coupled material point method. Eng Geol 239:1–12. https://doi.org/10.1016/J.ENGGEO.2018.02.007

    Article  Google Scholar 

  48. Wong TT, Fredlund DG, Krahn J (1998) A numerical study of coupled consolidation in unsaturated soils. Can Geotech J 35:926–937. https://doi.org/10.1139/t98-065

    Article  Google Scholar 

  49. Wu LZ, Zhang LM (2009) Analytical solution to 1D coupled water infiltration and deformation in unsaturated soils. Int J Numer Anal Methods Geomech 33:773–790. https://doi.org/10.1002/nag.742

    Article  Google Scholar 

  50. Yang CM, Yu WL, Dong JJ, Kuo CY, Shimamoto T, Lee CT, Togo T, Miyamoto Y (2014) Initiation, movement, and run-out of the giant Tsaoling landslide - what can we learn from a simple rigid block model and a velocity-displacement dependent friction law? Eng Geol 182:158–181. https://doi.org/10.1016/j.enggeo.2014.08.008

    Article  Google Scholar 

  51. Yang KH, Uzuoka R, Thuo JN et al (2017) Coupled hydro-mechanical analysis of two unstable unsaturated slopes subject to rainfall infiltration. Eng Geol 216:13–30. https://doi.org/10.1016/J.ENGGEO.2016.11.006

    Article  Google Scholar 

  52. Yerro A, Alonso EE, Pinyol NM (2015) The material point method for unsaturated soils. Géotechnique 65:201–217. https://doi.org/10.1680/geot.14.P.163

    Article  Google Scholar 

  53. Yerro A, Alonso EE, Pinyol NM (2016) Run-out of landslides in brittle soils. Comput Geotech 80:427–439. https://doi.org/10.1016/J.COMPGEO.2016.03.001

    Article  Google Scholar 

  54. Zabala F, Alonso EE (2011) Progressive failure of Aznalcóllar dam using the material point method. Géotechnique 61:795–808. https://doi.org/10.1680/geot.9.P.134

    Article  Google Scholar 

  55. Zhan TLT, Ng CWW (2004) Analytical analysis of rainfall infiltration mechanism in unsaturated soils. Int J Geomech 4:273–284. https://doi.org/10.1061/(ASCE)1532-3641(2004)4:4(273)

    Article  Google Scholar 

  56. Zhang LL, Zhang J, Zhang LM, Tang WH (2011) Stability analysis of rainfall-induced slope failure: a review. Proc Inst Civ Eng - Geotech Eng 164:299–316. https://doi.org/10.1680/geng.2011.164.5.299

    Article  Google Scholar 

  57. Zhang J, Huang HW, Zhang LM, Zhu HH, Shi B (2014) Probabilistic prediction of rainfall-induced slope failure using a mechanics-based model. Eng Geol 168:129–140. https://doi.org/10.1016/J.ENGGEO.2013.11.005

    Article  Google Scholar 

  58. Zhang LL, Li J, Li X, Zhang J, Zhu H (2016a) Rainfall-induced soil slope failure: stability analysis and probabilistic assessment. CRC Press, Boca Raton, USA

    Google Scholar 

  59. Zhang X, Chen Z, Liu Y (2016b) The material point method: a continuum-based particle method for extreme loading cases. Elsevier Inc., London, UK

    Google Scholar 

  60. Zienkiewicz OC, Chan AHC, Pastor M, Schrefler BA, Shiomi T (1999) Computational Geomechanics. Wiley, Chichester, UK

    Google Scholar 

Download references

Acknowledgements

The work described in this paper was supported by a grant from the Research Grants Council of the Hong Kong Special Administrative Region, China (Project No. T22-603/15N) and a grant from City University of Hong Kong (Project No. 7005040). The financial supports are gratefully acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yu Wang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Wang, Y. & Li, D. Numerical simulation of the 1995 rainfall-induced Fei Tsui Road landslide in Hong Kong: new insights from hydro-mechanically coupled material point method. Landslides (2020). https://doi.org/10.1007/s10346-020-01442-2

Download citation

Keywords

  • Landslide
  • Rainfall
  • Material point method
  • Unsaturated soils