Remote analysis of an open-pit slope failure: Las Cruces case study, Spain

Abstract

Slope failures occur in open-pit mining areas worldwide, producing considerable damage in addition to economic loss. Identifying the triggering factors and detecting unstable slopes and precursory displacements —which can be achieved by exploiting remote sensing data— are critical for reducing their impact. Here we present a methodology that combines digital photogrammetry, satellite radar interferometry, and geo-mechanical modeling, to perform remote analyses of slope instabilities in open-pit mining areas. We illustrate this approach through the back analysis of a massive landslide that occurred in an active open-pit mine in southwest Spain in January 2019. Based on pre- and post-event high-resolution digital elevation models derived from digital photogrammetry, we estimate an entire sliding mass volume of around 14 million m3. Radar interferometry reveals that during the year preceding the landslide, the line of sight accumulated displacement in the slope reached − 5.7 and 4.6 cm in ascending and descending geometry, respectively, showing two acceleration events clearly correlated with rainfall in descending geometry. By means of 3D and 2D stability analyses we located the slope instability, and remote sensing monitoring led us to identify the likely triggers of failure. Las Cruces event can be attributed to delayed and progressive failure mechanisms triggered by two factors: (i) the loss of historical suction due to a pore-water pressure increase driven by rainfall and (ii) the strain-softening behavior of the sliding material. Finally, we discuss the potential of this methodological approach either to remotely perform post-event analyses of mining-related landslides and evaluate potential triggering factors or to remotely identify critical slopes in mining areas and provide pre-alert warning.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. Agencia Estatal de Meteorología (2019) AEMET OpenData. https://opendata.aemet.es/centrodedescargas/inicio. Accessed 20 Feb 2019

  2. Agisoft LLC (2018) Agisoft PhotoScan professional (Version 1.2.6)

  3. Alonso EE, Gens A (2006) Aznalcóllar dam failure. Part 1: field observations and material properties. Geotechnique 56:165–183. https://doi.org/10.1680/geot.2006.56.3.165

    Article  Google Scholar 

  4. Bell FG, Donnelly LJ (2006) Mining and its impact on the environment. Taylor & Francis

  5. Boza M (2014) Comportamiento volumétrico de la marga azul del Guadalquivir ante los cambios de succión. Dissertation, University of Sevilla

  6. Brawner CO, Stacey PF (1979) Hogarth pit slope failure, Ontario, Canada. Dev Geotech Eng 14:691–707. https://doi.org/10.1016/B978-0-444-41508-0.50029-6

    Article  Google Scholar 

  7. Bru G, Fernández-Merodo JA, García-Davalillo JC, Herrera G, Fernández J (2018) Site scale modeling of slow-moving landslides, a 3d viscoplastic finite element modeling approach. Landslides 15:257–272. https://doi.org/10.1007/s10346-017-0867-y

    Article  Google Scholar 

  8. Carlà T, Farina P, Intrieri E, Ketizmen H, Casagli N (2018) Integration of ground-based radar and satellite InSAR data for the analysis of an unexpected slope failure in an open-pit mine. Eng Geol 235:39–52. https://doi.org/10.1016/j.enggeo.2018.01.021

    Article  Google Scholar 

  9. Carnec C, Delacourt C (2000) Three years of mining subsidence monitored by SAR interferometry, near Gardanne, France. J Appl Geophys 43:43–54

    Article  Google Scholar 

  10. Chen J, Li K, Chang KJ, Sofia G, Tarolli P (2015) Open-pit mining geomorphic feature characterisation. Int J Appl Earth Obs Geoinf 42:76–86. https://doi.org/10.1016/j.jag.2015.05.001

    Article  Google Scholar 

  11. Cooper S, Perez C, Vega L, et al (2011) The role of bedding planes in Guadalquivir blue marls on the slope stability in Cobre Las Cruces open pit. In: Proceedings of the International Symposium on Rock Slope Stability in Open Pit Mining and Civil Engineering, Vancouver. pp 1–16

  12. Crosetto M, Monserrat O, Cuevas-González M, Devanthéry N, Crippa B (2016) Persistent scatterer interferometry: a review. ISPRS J Photogramm Remote Sens 115:78–89. https://doi.org/10.1016/j.isprsjprs.2015.10.011

    Article  Google Scholar 

  13. Crosta GB, Agliardi F (2003) Failure forecast for large rock slides by surface displacement measurements. Can Geotech J 40:176–191. https://doi.org/10.1139/t02-085

    Article  Google Scholar 

  14. Dawson EM, Roth WH, Drescher A (1999) Slope stability analysis by strength reduction. Geotechnique 49:835–840. https://doi.org/10.1680/geot.1999.49.6.835

    Article  Google Scholar 

  15. de Bari C, Lapenna V, Perrone A, Puglisi C, Sdao F (2011) Digital photogrammetric analysis and electrical resistivity tomography for investigating the Picerno landslide (Basilicata region, southern Italy). Geomorphology 133:34–46. https://doi.org/10.1016/j.geomorph.2011.06.013

    Article  Google Scholar 

  16. Dick GJ, Eberhardt E, Cabrejo-Liévano AG, Stead D, Rose ND (2015) Development of an early-warning time-of-failure analysis methodology for open-pit mine slopes utilizing ground-based slope stability radar monitoring data. Can Geotech J 52:515–529. https://doi.org/10.1139/cgj-2014-0028

    Article  Google Scholar 

  17. Duncan JM (2003) State of the art: limit equilibrium and finite-element analysis of slopes. J Geotech Eng 122:577–596. https://doi.org/10.1061/(asce)0733-9410(1996)122:7(577)

    Article  Google Scholar 

  18. Ecologistas en Acción Sevilla (2019) Denuncia del nuevo derrumbe de la Mina Cobre las Cruces. https://www.ecologistasenaccion.org/113928/denuncia-del-nuevo-derrumbe-de-la-mina-cobre-las-cruces/. Accessed 20 Feb 2019

  19. Fernández-Merodo JA (2001) Une approche à la modélisation des glissements et des effondrements de terrains: initiation et propagation. Dissertation, École Centrale Paris

  20. Fernández-Merodo JA, García-Davalillo JC, Herrera G, Mira P, Pastor M (2014) 2D viscoplastic finite element modelling of slow landslides: the Portalet case study (Spain). Landslides 11:29–42. https://doi.org/10.1007/s10346-012-0370-4

    Article  Google Scholar 

  21. Ferretti A, Fumagalli A, Novali F, Prati C, Rocca F, Rucci A (2011) A new algorithm for processing interferometric data-stacks: SqueeSAR. IEEE Trans Geosci Remote Sens 49:3460–3470

    Article  Google Scholar 

  22. Ferretti A, Prati C, Rocca F (2001) Permanent scatterers in SAR interferometry. IEEE Trans Geosci Remote Sens 39:8–20. https://doi.org/10.1109/36.898661

    Article  Google Scholar 

  23. First Quantum Minerals Ltd. (2015) Cobre Las Cruces operation Andalucía, Spain NI 43-101 technical report. https://miningdataonline.com/reports/Cobre Las Cruces_06302015_Technical report.Pdf. Accessed 20 Feb 2019

  24. Fredlund DG, Rahardjo H (1993) Soil mechanics for unsaturated soils. Wiley, New York

    Google Scholar 

  25. Fukuzono T (1985) A new method for predicting the failure time of a slope. In: Proceedings of the IVth International Conference and Field Workshop on Landslides, Tokyo. pp 145–150

  26. Gens A, Alonso EE (2006) Aznalcóllar dam failure. Part 2: stability conditions and failure mechanism. Geotechnique 56:185–201. https://doi.org/10.1680/geot.2006.56.3.185

    Article  Google Scholar 

  27. Haas F, Hilger L, Neugirg F, Umstädter K, Breitung C, Fischer P, Hilger P, Heckmann T, Dusik J, Kaiser A, Schmidt J, Della Seta M, Rosenkranz R, Becht M (2016) Quantification and analysis of geomorphic processes on a recultivated iron ore mine on the Italian island of Elba using long-term ground-based lidar and photogrammetric SfM data by a UAV. Nat Hazards Earth Syst Sci 16:1269–1288. https://doi.org/10.5194/nhess-16-1269-2016

    Article  Google Scholar 

  28. Herrera G, Tomás R, Vicente F, Lopez-Sanchez JM, Mallorquí JJ, Mulas J (2010) Mapping ground movements in open pit mining areas using differential SAR interferometry. Int J Rock Mech Min Sci 47:1114–1125. https://doi.org/10.1016/j.ijrmms.2010.07.006

    Article  Google Scholar 

  29. Hoek E, Read J, Karzulovic A, Chen ZY (2000) Rock slopes in civil and mining engineering. In: ISRM International Symposium. International Society for Rock Mechanics and Rock Engineering

  30. Instituto Geográfico Nacional (2019) Centro de Descargas del CNIG. http://centrodedescargas.cnig.es/CentroDescargas/index.jsp. Accessed 20 Feb 2019

  31. Instituto Geológico y Minero de España (2008) GEODE - Zona Z2600 (Cuenca del Guadalquivir y Cuencas Béticas Postorogénicas, Subbético, Cuenca de Gibraltar). http://info.igme.es/cartografiadigital/geologica/geodezona.aspx?intranet=false&Id=Z2600. Accessed 20 Feb 2019

  32. James MR, Robson S (2012) Straightforward reconstruction of 3D surfaces and topography with a camera: accuracy and geoscience application. J Geophys Res Earth Surf 117:1–17. https://doi.org/10.1029/2011JF002289

    Article  Google Scholar 

  33. Jordá Bordehore L, Riquelme A, Cano M, Tomás R (2017) Comparing manual and remote sensing field discontinuity collection used in kinematic stability assessment of failed rock slopes. Int J Rock Mech Min Sci 97:24–32. https://doi.org/10.1016/j.ijrmms.2017.06.004

    Article  Google Scholar 

  34. Lucieer A, de Jong SM, Turner D (2014) Mapping landslide displacements using structure from motion (SfM) and image correlation of multi-temporal UAV photography. Prog Phys Geogr 38:97–116. https://doi.org/10.1177/0309133313515293

    Article  Google Scholar 

  35. Miguélez NG, Arroyo FT, Velasco F, Videira JC (2011) Geology and Cu isotope geochemistry of the Las Cruces deposit (SW Spain). http://www.ehu.eus/sem/macla_pdf/macla15/Macla15_131.pdf. Accessed 20 Feb 2019

  36. Mira P (2002) Análisis por Elementos Finitos de Problemas de Rotura de Geomateriales. Dissertation, Universidad Politécnica de Madrid

  37. Monserrat O, Crosetto M, Luzi G (2014) A review of ground-based SAR interferometry for deformation measurement. ISPRS J Photogramm Remote Sens 93:40–48. https://doi.org/10.1016/j.isprsjprs.2014.04.001

    Article  Google Scholar 

  38. Montero J, Perez C, Vega L, Varona P (2009) Coupled hydromechanical analysis of Cobre Las Cruces open pit. In: Proceedings Slope Stability, Santiago Chile. pp 1–9

  39. Moreno C, Sierra S, Sáez R (1996) Evidence for catastrophism at the Famennian-Dinantian boundary in the Iberian Pyrite Belt. In: Special Publications. Geological Society of London, pp 153–162

  40. Ng AHM, Ge L, Du Z et al (2017) Satellite radar interferometry for monitoring subsidence induced by longwall mining activity using Radarsat-2, Sentinel-1 and ALOS-2 data. Int J Appl Earth Obs Geoinf 61:92–103. https://doi.org/10.1016/j.jag.2017.05.009

    Article  Google Scholar 

  41. Oliveira JT (1990) Stratigraphy and Synsedimentary Tectonism. In: Pre-Mesozoic Geology of Iberia. pp 334–347

  42. Ozbay A, Cabalar AF (2014) FEM and LEM stability analyses of the fatal landslides at Çöllolar open-cast lignite mine in Elbistan, Turkey. Landslides 12:155–163. https://doi.org/10.1007/s10346-014-0537-2

    Article  Google Scholar 

  43. Pankow KL, Moore JR, Mark Hale J et al (2014) Massive landslide at Utah copper mine generates wealth of geophysical data. GSA Today 24:4–9. https://doi.org/10.1130/GSATG191A.1

    Article  Google Scholar 

  44. Paradella WR, Ferretti A, Mura JC, Colombo D, Gama FF, Tamburini A, Santos AR, Novali F, Galo M, Camargo PO, Silva AQ, Silva GG, Silva A, Gomes LL (2015) Mapping surface deformation in open pit iron mines of Carajás Province (Amazon Region) using an integrated SAR analysis. Eng Geol 193:61–78. https://doi.org/10.1016/j.enggeo.2015.04.015

    Article  Google Scholar 

  45. Petley DN, Bulmer MH, Murphy W (2002) Patterns of movement in rotational and translational landslides. Geology 30:719–722. https://doi.org/10.1130/0091-7613(2002)030<0719:POMIRA>2.0.CO;2

    Article  Google Scholar 

  46. Potts DM, Kovacevlc N, Vaughan PR (1997) Delayed collapse of cut slopes in stiff clay. Geotechnique 47:953–982. https://doi.org/10.1680/geot.1997.47.5.953

    Article  Google Scholar 

  47. Rassam D, Williams D (1997) Shear strength of unsaturated gold tailings. In: Proceedings of the eighth Australia-New Zealand conference on geotechnics. pp 329–335

  48. Raucoules D, Colesanti C, Carnec C (2007) Use of SAR interferometry for detecting and assessing ground subsidence. Compt Rendus Geosci 339:289–302. https://doi.org/10.1016/j.crte.2007.02.002

    Article  Google Scholar 

  49. Salvini R, Mastrorocco G, Esposito G, di Bartolo S, Coggan J, Vanneschi C (2018) Use of a remotely piloted aircraft system for hazard assessment in a rocky mining area (Lucca, Italy). Nat Hazards Earth Syst Sci 18:287–302. https://doi.org/10.5194/nhess-18-287-2018

    Article  Google Scholar 

  50. Samsonov S, d’Oreye N, Smets B (2013) Ground deformation associated with post-mining activity at the French-German border revealed by novel InSAR time series method. Int J Appl Earth Obs Geoinf 23:142–154. https://doi.org/10.1016/j.jag.2012.12.008

    Article  Google Scholar 

  51. Sanz de Galdeano C, Vera JA (1992) Stratigraphic record and palaeogeographical context of the Neogene basins in the Betic Cordillera, Spain. Basin Res 4:21–36. https://doi.org/10.1111/j.1365-2117.1992.tb00040.x

    Article  Google Scholar 

  52. Sarro R, Riquelme A, García-Davalillo JC, Mateos R, Tomás R, Pastor J, Cano M, Herrera G (2018) Rockfall simulation based on UAV photogrammetry data obtained during an emergency declaration: application at a cultural heritage site. Remote Sens 10:1–20. https://doi.org/10.3390/rs10121923

    Article  Google Scholar 

  53. Schrefler BA (1984) The finite element method in soil consolidation. Dissertation, University College of Swansea

  54. Seegmiller BL (1979) Twin buttes pit slope failure, Arizona, U.S.a. Dev Geotech Eng 14:651–666. https://doi.org/10.1016/B978-0-444-41508-0.50027-2

    Article  Google Scholar 

  55. Snavely KN (2008) Scene reconstruction and visualization from internet photo collections. Dissertation, University of Washington

  56. Sornette D, Helmstetter A, Andersen JV, Gluzman S, Grasso JR, Pisarenko V (2004) Towards landslide predictions: two case studies. Phys A Stat Mech its Appl 338:605–632. https://doi.org/10.1016/j.physa.2004.02.065

    Article  Google Scholar 

  57. Stark TD, Eid HT (1997) Slope stability analyses in stiff fissured clays. J Geotech Eng 123:335–343. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:4(335)

    Article  Google Scholar 

  58. Thoeni K, Irschara A, Giacomini A (2012) Efficient photogrammetric reconstruction of highwalls in open pit coal mines. In: 16th Australasian Remote Sensing and Photogrammetry Conference. pp 85–90

  59. Tomás R, Abellán A, Cano M, Riquelme A, Tenza-Abril AJ, Baeza-Brotons F, Saval JM, Jaboyedoff M (2018) A multidisciplinary approach for the investigation of a rock spreading on an urban slope. Landslides 15:199–217. https://doi.org/10.1007/s10346-017-0865-0

    Article  Google Scholar 

  60. Tornos F, Velasco F, Slack JF, Delgado A, Gomez-Miguelez N, Escobar JM, Gomez C (2017) The high-grade Las Cruces copper deposit, Spain: a product of secondary enrichment in an evolving basin. Mineral Deposita 52:1–34. https://doi.org/10.1007/s00126-016-0650-3

    Article  Google Scholar 

  61. Tsige M, González de Vallejo L, Doval M, Barba C (1994) Microfabric of Guadalquivir “blue marls” and its engineering geological significance. In: International congress. International Association of Engineering Geology. pp 659–665

  62. Tutluoglu L, Ferid Öge I, Karpuz C (2011) Two and three dimensional analysis of a slope failure in a lignite mine. Comput Geosci 37:232–240. https://doi.org/10.1016/j.cageo.2010.09.004

    Article  Google Scholar 

  63. Ullman S (1979) The interpretation of structure from motion. In: Proceedings of the Royal Society of London. Series B. Biological Sciences. pp 405–426

  64. Varnes DJ (1978) Slope movement types and processes. Special Rep 176:11–33

    Google Scholar 

  65. Vaziri A, Moore L, Ali H (2010) Monitoring systems for warning impending failures in slopes and open pit mines. Nat Hazards 55:501–512. https://doi.org/10.1007/s11069-010-9542-5

    Article  Google Scholar 

  66. Voight B (1988) A method for prediction of volcanic eruptions. Nature 332:125–130. https://doi.org/10.1038/332125a0

    Article  Google Scholar 

  67. Voight B (1989) A relation to describe rate-dependent material failure. Science (80-) 243:200–203. https://doi.org/10.1126/science.243.4888.200

    Article  Google Scholar 

  68. Voight B, Kennedy BA (1979) Slope failure of 1967–1969, Chuquicamata Mine, Chile. Dev Geotech Eng 14:595–632. https://doi.org/10.1016/B978-0-444-41508-0.50025-9

    Article  Google Scholar 

  69. Westoby MJ, Brasington J, Glasser NF, Hambrey MJ, Reynolds JM (2012) “Structure-from-motion” photogrammetry: a low-cost, effective tool for geoscience applications. Geomorphology 179:300–314. https://doi.org/10.1016/j.geomorph.2012.08.021

    Article  Google Scholar 

  70. Xiang J, Chen J, Sofia G, Tian Y, Tarolli P (2018) Open-pit mine geomorphic changes analysis using multi-temporal UAV survey. Environ Earth Sci 77. https://doi.org/10.1007/s12665-018-7383-9

  71. Zienkiewicz OC, Humpheson C, Lewis RW (1975) Associated and non-associated visco-plasticity and plasticity in soil mechanics. Geotechnique 25:671–689. https://doi.org/10.1680/geot.1975.25.4.671

    Article  Google Scholar 

Download references

Acknowledgements

The photos taken on 25 January 2019 at Las Cruces open-pit mine were provided by Ecologistas en Acción Sevilla. First author shows gratitude for the working contract arranged with HEMAV SL for the development of the project and second author for the PhD student contract BES-2014-069076.

Funding

This work was supported by the Regional Administration of Madrid (Comunidad de Madrid) in the framework of the Industrial PhD Project GEODRON (IND2017/AMB-7789). It was also partially funded by the U-GEOHAZ project, co-funded by the European Commission, Directorate-General for Humanitarian Aid and Civil Protection (ECHO), under the call UCPM-2017-PP-AG, and E-SHAPE project co-funded by the European Union’s Horizon 2020 research and innovation program under grant agreements 820852.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Juan López-Vinielles.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

López-Vinielles, J., Ezquerro, P., Fernández-Merodo, J.A. et al. Remote analysis of an open-pit slope failure: Las Cruces case study, Spain. Landslides (2020). https://doi.org/10.1007/s10346-020-01413-7

Download citation

Keywords

  • Open-pit mine
  • Structure from motion (SfM)
  • Satellite radar interferometry (InSAR)
  • Stability analysis
  • Finite element method (FEM)
  • Shear strength reduction (SSR)