, Volume 15, Issue 9, pp 1713–1730 | Cite as

Laboratory experiments on three-dimensional deformable granular landslides on planar and conical slopes

  • Brian C. McFall
  • Fahad Mohammed
  • Hermann M. Fritz
  • Yibin Liu
Original Paper


Landslides of subaerial and submarine origin may generate tsunamis with locally extreme amplitudes and runup. While the landslides themselves are dangerous, the hazards are compounded by the generation of tsunamis along coastlines, in enclosed water bodies, and off continental shelves and islands. Tsunamis generated by three-dimensional deformable granular landslides were studied on planar and conical hill slopes in the three-dimensional NEES tsunami wave basin at Oregon State University based on the generalized Froude similarity. A unique pneumatic landslide tsunami generator (LTG) was deployed to control the kinematics and acceleration of the naturally rounded river gravel and cobble landslides to simulate broad ranges of landslide shapes and velocities along the slope. Lateral and overhead cameras are used to measure the landslide shapes and kinematics, while acoustic transducers provide the shape of the subaqueous deposits. The subaerial landslide shape is extracted from the camera images as the landslide propagates under gravity down the hill slope, and surface reconstruction of the landslide is conducted using the stereo particle image velocimetry (PIV) system on the conical hill slope. Subaerial landslide surface velocities are measured with a planar PIV system on the planar hill slope and stereo PIV system on the conical hill slope. The submarine deposits are characterized by the runout distances and the deposit thickness distributions. Larger cobbles are observed producing hummock type features near the maximum runout length. These unique laboratory landslide experiments serve to validate deformable landslide models as well as provide the source characteristics for tsunami generation.


Granular landslides Physical modeling Landslide tsunami generator Particle image velocimetry Three-dimensional experiments Image processing 



The data from this study may be obtained at data depot of the DesignSafe-CI website at

Funding information

This work was supported by the National Science Foundation (NSF), Division of Civil, Mechanical and Manufacturing Innovation awards: CMMI-0421090, CMMI-0936603, CMMI-0402490, CMMI-0927178, and CMMI-1563217; the U.S. Department of Defense (DoD) through the Science, Mathematics and Research for Transformation (SMART) fellowship; and the U.S. Army Corps of Engineers through the Coastal Inlet Research Program (CIRP).


  1. Ataie-Ashtiani B, Najafi-Jilani A (2008) Laboratory investigations on impulsive waves caused by underwater landslide. Coast Eng 55(12):989–1004. CrossRefGoogle Scholar
  2. Bardet J-P, Synolakis C, Davis H, Imamura F, Okal E (2003) Landslide tsunamis: recent findings and research directions. Pure Appl Geophys 160:1793–1809CrossRefGoogle Scholar
  3. Bondevik S, Løvholt F, Harbitz C, Mangerud J, Dawson A, Svendson J (2005) The Storegga slide tsunami comparing field observations with numerical solutions. Mar Pet Geol 22:195–208CrossRefGoogle Scholar
  4. Bregoli F, Bateman A, Medina V (2017) Tsunamis generated by fast granular landslides: 3D experiments and empirical predictors. J Hydraul Res 55:743–758. CrossRefGoogle Scholar
  5. Brücker C, Hess D, Kitzhofer J (2012) Single-view volumetric PIV via high-resolution scanning, isotropic voxel restructuring and 3D least-squares matching (3D-LSM). Meas Sci Technol 24(2):024001CrossRefGoogle Scholar
  6. Buffington JM, Dietrich WE, Kirchner JW (1992) Friction angle measurements on a naturally formed gravel streambed: implications for critical boundary shear stress. Water Resour Res 28:411–425. CrossRefGoogle Scholar
  7. Chen F, Chen X, Xie X, Feng X, Yang L (2013) Full-field 3D measurement using multi-camera digital image correlation system. Opt Lasers Eng 51(9):1044–1052CrossRefGoogle Scholar
  8. Crosta GB, Imposimato S, Roddeman D (2016) Landslide spreading, impulse water waves and modelling of the Vajont rockslide. Rock Mech Rock Eng 49(6):2413–2436. CrossRefGoogle Scholar
  9. Di Risio M, DeGirolamo P, Bellotti G, Panizzo A, Aristodemo F, Molfetta MG, Petrillo AF (2009) Landslide-generated tsunamis runup at the coast of a conical island: new physical model experiments. J Geophys Res 114:C01009. CrossRefGoogle Scholar
  10. Enet F and Grilli ST (2005) Tsunami landslide generation: modeling and experiments. In Proc 5th Int Conf on Ocean Wave Measurement. Madrid, Spain:WAVES 2005Google Scholar
  11. Enet F, Grilli ST (2007) Experimental study of tsunami generation by three-dimensional rigid underwater landslides. J Waterw Port Coast Ocean Eng 133(6):442–454CrossRefGoogle Scholar
  12. Fincham AM, Delerce G (2000) Advanced optimization of correlation imaging velocimetry algorithms. Exp Fluids 29:S13–S22CrossRefGoogle Scholar
  13. Fine I, Rabinovich A, Bornhold B, Thomson R, Kulikov E (2005) The grand banks landslide-generated tsunami of November 18, 1929: preliminary analysis and numerical modeling. Mar Geol 215:45–47CrossRefGoogle Scholar
  14. Fritz HM (2002a) Initial phase of landslide-generated impulse waves. PhD thesis. Eidg. Tech. Hochsch, Zürich, SwitzerlandGoogle Scholar
  15. Fritz HM (2002b) PIV applied to landslide generated impulse waves. In: Adrian RJ et al (eds) Laser techniques for fluid mechanics. Springer, Berlin, pp 305–320CrossRefGoogle Scholar
  16. Fritz HM, Moser P (2003) Pneumatic landslide generator. Int J Fluid Power 4(1):49–57CrossRefGoogle Scholar
  17. Fritz HM, Hager WH, Minor H-E (2001) Lituya bay case: rockslide impact and wave run-up. Sci Tsunami Haz 19(1):3–22Google Scholar
  18. Fritz HM, Hager WH, Minor H-E (2003a) Landslide generated impulse waves. 1. Instantaneous flow fields. Exp Fluids 35:505–519CrossRefGoogle Scholar
  19. Fritz HM, Hager WH, Minor H-E (2003b) Landslide generated impulse waves. 2. Hydrodynamic impact craters. Exp Fluids 35:520–532CrossRefGoogle Scholar
  20. Fritz HM, Hager WH, Minor H-E (2004) Near field characteristics of landslide generated impulse waves. J Waterw Port Coast Ocean Eng 130(6):287–302CrossRefGoogle Scholar
  21. Fritz HM, Kongko W, Moore A, McAdoo B, Goff J, Harbitz C, Uslu B, Kalligeris N, Suteja D, Kalsum K, Titov V, Gusman A, Latief H, Santoso E, Sujoko S, Djulkarnaen D, Sunendar H, Synolakis C (2007) Extreme runup from the 17 July 2006 Java tsunami. Geophys Res Lett 34:L12602CrossRefGoogle Scholar
  22. Fritz HM, Mohammed F, Yoo J (2009) Lituya Bay landslide impact generated mega-tsunami 50th anniversary. Pure Appl Geophys 166(1–2):153–175CrossRefGoogle Scholar
  23. Fritz HM, Hillaire JV, Molière E, Wei Y, Mohammed F (2013) Twin tsunamis triggered by the 12 January 2010 Haiti earthquake. Pure Appl Geophys 170(9–10):1463–1474. CrossRefGoogle Scholar
  24. Garcia D, Orteu JJ, Penazzi L (2002) A combined temporal tracking and stereo-correlation technique for accurate measurement of 3D displacements: application to sheet metal forming. J Mater Proccess Technol 125:736–742CrossRefGoogle Scholar
  25. Genevois R, Ghirotti M (2005) The 1963 Vaiont landslide. Giorn Geol Appl I:41–52Google Scholar
  26. Glicken H (1996) Rockslide-debris avalanche of May, 18, 1980, Mount St. Helens volcano, Washington. U.S. Geological Survey. Open-File Report 96–677Google Scholar
  27. Gray JMNT, Wieland M, Hutter K (1999) Gravity-driven free surface flow of granular avalanches over complex basal topography. Proc R Soc A 455:1841–1874CrossRefGoogle Scholar
  28. Greve R, Hutter K (1993) Motion of a granular avalanche in a convex and concave curved chute: experiments and theoretical predictions. Phil Trans R Soc A 342:573–600. Google Scholar
  29. Grilli ST, Watts P (2005) Tsunami generation by submarine mass failure. I: modeling, experimental validation, and sensitivity analysis. J Waterw Port Coast Ocean Eng 131(6):283–297CrossRefGoogle Scholar
  30. Hampton MA, Lee HJ, Locat J (1996) Submarine landslides. Rev Geophys 34(1):33–59. CrossRefGoogle Scholar
  31. Hart DP (1998) Super-resolution PIV by recursive local correlation. In Proc Intl Conf Optical Tech and Image Processing in Fluid, Thermal and Combustion Flow. Yokohama, Japan. VSJ-SPIE98, AB149: 167–180Google Scholar
  32. Hartley R, Zissermann A (2000) Multiple view geometry in computer vision. Cambridge University Press, CambridgeGoogle Scholar
  33. Heim A (1882) Der Bergsturz von Elm. Z Dtsch Geol Ges 34:74–115 (in German)Google Scholar
  34. Heim A (1932) Bergsturz und Menschenleben. Fretz und Wasmuth, Zürich (in German) Google Scholar
  35. Heller V, Hager WH (2010) Impulse product parameter in landslide generated impulse waves. J Waterw Port Coast Ocean Eng 136:145–155. CrossRefGoogle Scholar
  36. Hendron AJ, Patton FD (1985) The Vaiont slide, a geotechnical analysis based on new geologic observations of the failure surface. US Army Corps of Engineers Technical Report GL-85-5 (2 volumes)Google Scholar
  37. Hsü KR (1975) Catastrophic debris streams (sturzstroms) generated by rockfalls. Geol Soc Am Bull 86(1):128–140CrossRefGoogle Scholar
  38. Huang HT, Fielder HF, Wang JJ (1993a) Limitations and improvements of PIV. Part I: limitation of conventional techniques due to deformation of particle image patterns. Exp Fluids 15:168–174CrossRefGoogle Scholar
  39. Huang HT, Fielder HF, Wang JJ (1993b) Limitations and improvements of PIV. Part II: particle image distortion, a novel technique. Exp Fluids 15:263–273CrossRefGoogle Scholar
  40. Huang HT, Dabiri D, Gharib M (1997) On errors of digital particle image velocimetry. Meas Sci Technol 8:1427–1440CrossRefGoogle Scholar
  41. Huber A (1980) Schwallwellen in Seen als Folge von Bergstürzen, VAW Mitteilung 47, Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie, ETH ZürichGoogle Scholar
  42. Hutter K, Koch T (1991) Motion of a granular avalanche in an exponentially curved chute: experiments and theoretical predictions. Phil Trans R Soc A 334:93–138Google Scholar
  43. Hutter K, Koch T, Plüss C, Savage SB (1995) Dynamics of avalanches of granular materials from initiation to runout, part II: laboratory experiments. Acta Mech 109:127–165CrossRefGoogle Scholar
  44. Iverson RM, Logan M, Denlinger RP (2004) Granular avalanches across irregular three-dimensional terrain. 2. Experimental tests. J Geophys Res 109:F01015CrossRefGoogle Scholar
  45. Kähler CJ, Astarita T, Vlachos PP, Sakakibara J, Hain R, Discetti S, La Foy R, Cierpka C (2016) Main results of the 4th international piv challenge. Exp Fluids 57:97. CrossRefGoogle Scholar
  46. Keane RR, Adrian RJ (1992) Theory of cross-correlation analysis of PIV images. Appl Sci Res 49:191–215CrossRefGoogle Scholar
  47. Koch T (1989) Bewegung einer Granulatlawine entlang einer gekrümmten Bahn. Diplomarbeit. Technische Hochschule Darmstadt. 122 ppGoogle Scholar
  48. Koch T, Greve R, Hutter K (1994) Unconfined flow of granular avalanches along a partly curved surface. Part II. Experiments and numerical computations. Proc R Soc A 445:415–435CrossRefGoogle Scholar
  49. Körner HJ (1983) Zur Mechanik der Bergsturzströme von Huascarán, Peru. Hochgebirgsforschung 6:71–110 (in German) Google Scholar
  50. Li Z, Komar PD (1986) Laboratory measurements of pivoting angles for applications to selective entrainment of gravel in a current. Sedimentology 33:413–423. CrossRefGoogle Scholar
  51. Lindken R, Merzkirch W (2000) Velocity measurements of liquid and gaseous phase for a system of bubbles rising in water. Exp Fluids 29:S194–S201CrossRefGoogle Scholar
  52. Locat J (2001) Instabilities along ocean margins: a geomorphological and geotechnical perspective. Mar Pet Geol 18:503–512CrossRefGoogle Scholar
  53. Locat J, Lee HJ (2002) Submarine landslides: advances and challenges. Can Geotech J 39:193–212CrossRefGoogle Scholar
  54. McFall BC (2014) Physical modeling landslide generated tsunamis in various scenarios from fjords to conical islands, PhD thesis, Ga. Inst of Tech, AtlantaGoogle Scholar
  55. McFall BC, Fritz HM (2016) Physical modelling of tsunamis generated by three-dimensional deformable granular landslides on planar and conical island slopes. Proc R Soc A 472:20160052. CrossRefGoogle Scholar
  56. McFall BC, Fritz HM (2017) Runup of granular landslide generated tsunamis on planar coasts and conical islands. J Geophys Res: Oceans 122:6901–6922. CrossRefGoogle Scholar
  57. McSaveney MJ (1978) Sherman Glacier rock avalanche, Alaska, U.S.A. In: Voight B (ed) Rockslides and avalanches, vol 14(A). Elsevier, Amsterdam, pp 197–258. Google Scholar
  58. Miller GS, Andy Take W, Mulligan RP, McDougall S (2017) Tsunamis generated by long and thin granular landslides in a large flume. J Geophys Res Oceans 122:653–668. CrossRefGoogle Scholar
  59. Mohammed F (2010) Physical modeling of tsunamis generated by three-dimensional deformable granular landslides, PhD thesis, Ga. Inst of Tech, AtlantaGoogle Scholar
  60. Mohammed F, Fritz HM (2012) Physical modeling of tsunamis generated by three-dimensional deformable granular landslides. J Geophys Res: Oceans 117:C11015. CrossRefGoogle Scholar
  61. Mohammed F, Fritz HM (2013) Correction to “Physical modeling of tsunamis generated by three-dimensional deformable granular landslides”. J Geophys Res: Oceans 118:3221. CrossRefGoogle Scholar
  62. Moore JG, Clague DA, Holcomb RT, Lipman PW, Normark WR, Torresan ME (1989) Prodigious submarine landslides on the Hawaiian ridge. J Geophys Res: Sol Earth 94:17465–17484CrossRefGoogle Scholar
  63. Müller L (1964) The rock slide in the Vajont valley. Rock Mech Eng Geol 2(3–4):148–212Google Scholar
  64. Nonveiller E (1987) The Vajont reservoir slope failure. Eng Geol 24:493–512CrossRefGoogle Scholar
  65. Ohmer M (1994) Schnelle und langsame Bewegungen mit der Pneumatik. Pneumatic Tips 39(86):25–29 (in German) Google Scholar
  66. Orteu JJ, Garric V, Devy M (1997) Camera calibration for 3D reconstruction: application to the measurement of 3D deformations on sheet metal parts. In Lasers and Optics in Manufacturing III (pp. 252–263). Intl Soc for Optics and PhotonicsGoogle Scholar
  67. Panizzo A, Girolamo PD and Petaccia A (2005) Forecasting impulse waves generated by subaerial landslides. J Geophys Res 110(C12)Google Scholar
  68. Plafker G, Ericksen GE (1979) Nevados Huascarán avalanches, Peru. Rockslides and avalanches. In: Voight B (ed) Developments in geotechnical engineering 14A, vol 1. Elsevier, Amsterdam, pp 277–314Google Scholar
  69. Plafker G, Erickson GE, Fernández Concha J (1971) Geological aspects of the May 31, 1970 Peru earthquake. Bull Seismol Soc Am 61(3):543–578Google Scholar
  70. Plüss C (1987) Experiments on granular avalanches. PhD thesis. Eidg. Tech. Hochsch, Zürich, SwitzerlandGoogle Scholar
  71. Poncet R, Campbell C, Dias F, Locat J, Mosher D (2010) A study of the tsunami effects of two landslides in the St. Lawrence estuary. Submarine mass movements and their consequences. Adv Nat Technol Hazards Res 28:755–764. Google Scholar
  72. Pudasani SP, Wang Y, Sheng L-T, Hsiau S-S, Hutter K, Katzenbach R (2008) Avalanching granular flows down curved and twisted channels: theoretical and experimental results. Phys Fluids 20(7):073302CrossRefGoogle Scholar
  73. Raffel M, Willert CE, Kompenhans J (1998) Particle image velocimetry—a practical guide. Springer, BerlinCrossRefGoogle Scholar
  74. Romano A, Di Risio M, Bellotti G, Molfetta MG, Damiani L, De Girolamo P (2016) Tsunamis generated by landslides at the coast of conical islands: experimental benchmark dataset for mathematical model validation. Landslides 13:1379–1393. CrossRefGoogle Scholar
  75. Roth GI, Mascenik DT, Katz J (1999) Measurements of the flow structure and turbulence within a ship bow wave. Phys Fluids 11:3512–3523CrossRefGoogle Scholar
  76. Sartori M, Baillifard F, Jaboyedoff M, Rouiller JD (2003) Kinematics of the 1991 Randa rockslide (Valais, Switzerland). Nat Hazards Earth Sys Sci 3:423–433CrossRefGoogle Scholar
  77. Savage SB, Hutter K (1989) The motion of granular material down a rough inclince. J Fluid Mech 199:177–215CrossRefGoogle Scholar
  78. Savage SB, Hutter K (1991) The dynamics of avalanches of granular materials from initiation to runout. Part I: Analysis Acta Mech 86:201–223Google Scholar
  79. Scarano F, Riethmuller ML (1999) Iterative multigrid approach in piv image processing with discrete window offset. Exp Fluids 26:513–523CrossRefGoogle Scholar
  80. Scarano F, Riethmuller ML (2000) Advances in iterative multigrid piv image processing. Exp Fluids 29:S51–S60CrossRefGoogle Scholar
  81. Scheidegger AE (1973) On the prediction of the reach and velocity of catastrophic landslides. Rock Mech Rock Eng 5:231–236. CrossRefGoogle Scholar
  82. Shreve RL (1966) Sherman landslide. Alaska Sci 154:1639–1643Google Scholar
  83. Shreve RL (1968) Leakage and fluidization in air-lubricated avalanches. Geol Soc Am Bull 79:653–658CrossRefGoogle Scholar
  84. Synolakis CE, Bardet J, Borrero JC, Davies HL, Okal EA, Silver EA, Sweet S, Tappin DR (2002) Slump origin of the 1998 Papua New Guinea tsunami. Proc R Soc A 458:763–789CrossRefGoogle Scholar
  85. Tai CY, Wang Y, Gray JMNT, Hutter K (1999) Methods of similitude in granular avalanche flows. In: Hutter K, Wang Y, Beer H (eds) Advances in cold-regions thermal engineering and sciences, lecture notes in physics, vol 533. Springer, Berlin, pp 415–428CrossRefGoogle Scholar
  86. Tai YC, Gray JMNT, Hutter K (2001) Dense granular avalanches: mathematical description and experimental validation. In: Balmforth NL, Provenzale A (eds) Geomorphological fluid mechanics, lecture notes in physics, vol 582. Springer, Berlin, pp 339–366CrossRefGoogle Scholar
  87. Tinti S, Manucci A, Pagnoni G, Armigliato A, Zaniboni R (2005) The 30 December 2002 landslide-induced tsunamis in Stromboli: sequence of the events reconstructed from the eyewitness accounts. Nat Hazards Earth Sys Sci 5:763–775CrossRefGoogle Scholar
  88. Tinti S, Maramai A, Armigiliato A, Graziani L, Manucci A, Pagnoni G, Zanoboni F (2006) Observations of physical effects from tsunamis of December 30, 2002 at Stromboli volcano, Southern Italy. Bull Volcanol 68:450–461CrossRefGoogle Scholar
  89. Urgeles R, Locat J, Lee HJ, Martin F (2002) The Saguenay Fjord, Quebec, Canada: integrating marine geotechnical and geophysical data for spatial seismic slope stability and hazard assessment. Mar Geol 185:319–340CrossRefGoogle Scholar
  90. Varnes DJ (1978) Slope movements type and processes, TRB, National Research Council, Washington, D.C, vol. 176 of Landslides analysis and control, 11–33Google Scholar
  91. Voight B, Glicken H, Janda R, Douglass P (1981) Catastrophic rockslide avalanche of may 18. In: Lipman PW, Mullineaux DR (eds) The 1980 eruptions of Mount St. Helens, vol 1250. U.S. Geologial Survey Professional Paper, Washington, DC, pp 347–378Google Scholar
  92. Voight B, Janda R, Douglass P (1983) Nature and mechanics of the Mount St. Helens rockslide-avalanche of 18 May 1980. Geotechnique 33:243–273CrossRefGoogle Scholar
  93. Walder JS, Watts P, Sorensen OE, Janssen K (2003) Tsunamis generated by subaerial mass flows. J Geophys Res 108(B5):2236CrossRefGoogle Scholar
  94. Watts P (2000) Tsunami features of solid block underwater landslides. J Waterw Port Coast Ocean Eng 126(3):144–152CrossRefGoogle Scholar
  95. Weiss R, Fritz HM, Wünnemann K (2009) Hybrid modeling of the megatsunami runup in Lituya Bay after half a century. Geophys Res Lett 36:L09602Google Scholar
  96. Westerweel J (2000) Theoretical analysis of the measurement precision in particle image velocimetry. Exp Fluids 29:S3–S12CrossRefGoogle Scholar
  97. Westerweel J, Dabiri D, Gharib M (1997) The effect of a discrete window offset on the accuracy of cross-correlation analysis of digital piv recordings. Exp Fluids 231:20–28CrossRefGoogle Scholar
  98. Wieland M, Gray JMNT, Hutter K (1999) Channelized free surface flow of cohesionless granular avalanche in a chute with shallow lateral curvature. J Fluid Mech 293:73–100CrossRefGoogle Scholar
  99. Xenakis AM, Lind SJ, Stansby PK, Rogers BD (2017) Landslides and tsunamis predicted by incompressible smoothed particle hydrodynamics (SPH) with application to the 1958 Lituya Bay event and idealized experiment. Proc R Soc A 473(2199):20160674. CrossRefGoogle Scholar
  100. Yavari-Ramshe S, Ataie-Ashtiani B (2017) A rigorous finite volume model to simulate subaerial and submarine landslide-generated waves. Landslides 14:203–222. CrossRefGoogle Scholar
  101. Zweifel A, Hager WH, Minor H-E (2006) Plane impulse waves in reservoirs. J Waterw Port Coast Ocean Eng 132:358–368. CrossRefGoogle Scholar

Copyright information

© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2018

Authors and Affiliations

  • Brian C. McFall
    • 1
    • 2
  • Fahad Mohammed
    • 2
    • 3
  • Hermann M. Fritz
    • 2
  • Yibin Liu
    • 2
  1. 1.U.S. Army Engineer Research and Development CenterVicksburgUSA
  2. 2.School of Civil and Environmental EngineeringGeorgia Institute of TechnologyAtlantaUSA
  3. 3.Research DivisionCenter for Property Risk Solutions, FM GlobalNorwoodUSA

Personalised recommendations