Advertisement

Landslides

, Volume 15, Issue 8, pp 1577–1593 | Cite as

A modified finite difference model for the modeling of flowslides

  • Wei Shen
  • Tonglu Li
  • Ping Li
  • Jian Guo
Original Paper
  • 321 Downloads

Abstract

In this paper, a modified finite difference model is proposed to simulate the propagation of flowslides. Modifications of the new model are conducted by calculating the lateral pressure coefficient k in the sliding mass and the entrainment and centrifugal effect during the transport process. The strength parameters are modified based on the size of the entrainment to consider the change in the landslide strength due to material mixing. Two dam break problems are simulated to test the accuracy and stability of the numerical scheme, and the results show good agreement with the analytical solutions and the measured data. Then, the model is used to analyze a typical flowslide: the Dagou landslide in Gansu Province, China. The model can accurately predict the details of the motion of the landslide, especially behaviors such as turning along the meandering gully and thrusting on the gully slopes due to centrifugal force.

Keywords

Flowslides Finite difference method Numerical simulation Centrifugal effect Entrainment 

Notes

Funding information

The authors of this paper appreciate the funding received from the National Key R&D Program of China (2017YFC1501302), the Chinese Ministry of Science and Technology (Grant No. 2014CB744701), and the Chinese Fundamental Research Funds for the Central Universities (No. 310826172001) which supported this study.

References

  1. Bossi G, Cavalli M, Crema S, Frigerio S, Luna BQ, Mantovani M, Marcato G, Schenato L, Pasuto A (2015) Multi-temporal LiDAR-DTMs as a tool for modelling a complex landslide: a case study in the Rotolon catchment (eastern Italian Alps). Nat Hazards Earth Syst Sci 15:715–722.  https://doi.org/10.5194/nhess-15-715-2015 CrossRefGoogle Scholar
  2. Crosta GB, Imposimato S, Roddeman DG (2003) Numerical modelling of large landslides stability and runout. Nat Hazards Earth Syst Sci 3:523–538.  https://doi.org/10.5194/nhess-3-523-2003 CrossRefGoogle Scholar
  3. Crosta GB, Imposimato S, Roddeman DG (2006) Continuum numerical modelling of flow-like landslides. In: Evans et al (eds) Landslides from massive rock slope failure. Springer, Berlin, pp 211–232CrossRefGoogle Scholar
  4. Crosta GB, Blasio FVD, Caro MD, Volpi G, Imposimato S, Roddeman D (2017) Modes of propagation and deposition of granular flows onto an erodible substrate: experimental, analytical, and numerical study. Landslides 14:47–68.  https://doi.org/10.1007/s10346-016-0697-3 CrossRefGoogle Scholar
  5. Cuomo S (2014) New advances and challenges for numerical modeling of landslides of the flow type. Proced Earth Planet Sci 9:91–100.  https://doi.org/10.1016/j.proeps.2014.06.004 CrossRefGoogle Scholar
  6. Cuomo S, Pastor M, Cascini L, Castorino GC (2014) Interplay of rheology and entrainment in debris avalanches: a numerical study. Can Geotech J 51:1318–1330.  https://doi.org/10.1139/cgj-2013-0387 CrossRefGoogle Scholar
  7. Cuomo S, Pastor M, Capobianco V, Cascini L (2016) Modelling the space–time evolution of bed entrainment for flow-like landslides. Eng Geol 212:10–20.  https://doi.org/10.1016/j.enggeo.2016.07.011 CrossRefGoogle Scholar
  8. Denlinger RP, Connell DRH (2008) Computing nonhydrostatic shallow-water flow over steep terrain. J Hydraul Eng 134:1590–1602.  https://doi.org/10.1061/(ASCE)0733-9429(2008)134:11(1590) CrossRefGoogle Scholar
  9. Di Gregorio S, Nicoletta FP, Rongo R, Sorriso-Valvo M, Spataro W (1997) SCIDDICA-3: a cellular automata model for landslide simulation. In: Morabito FC (ed) Advances in intelligent systems. IOS Press, Amsterdam, pp 324–330Google Scholar
  10. Evans SG, Tutubalina OV, Drobyshev VN, Chernomorets SS, McDougall S, Petrakov DA, Hungr O (2009) Catastrophic detachment and high-velocity long-runout flow of Kolka Glacier, Caucasus Mountains, Russia in 2002. Geomorphology 105:314–321.  https://doi.org/10.1016/j.geomorph.2008.10.008 CrossRefGoogle Scholar
  11. Fraccarollo L, Capart H (2002) Riemann wave description of erosional dam-break flows. J Fluid Mech 461:183–228.  https://doi.org/10.1017/S0022112002008455 CrossRefGoogle Scholar
  12. Fraccarollo L, Toro EF (1995) Experimental and numerical assessment of the shallow water model for two-dimensional dam-break type problems. J Hydraul Res 33:843–864.  https://doi.org/10.1080/00221689509498555 CrossRefGoogle Scholar
  13. Hairer E, Nørsett SP, Wanner G (1993) Solving ordinary differential equations I: nonstiff problems, 2nd revised. Springer, Berlin, pp 357–360Google Scholar
  14. Hungr O (1995) A model for the runout analysis of rapid flow slides, debris flows and avalanches. Can Geotech J 32:610–623.  https://doi.org/10.1139/t95-063 CrossRefGoogle Scholar
  15. Hungr O, Evans SG (2004) Entrainment of debris in rock avalanches: an analysis of a long run-out mechanism. GSA Bull 116:1240–1252.  https://doi.org/10.1130/B25362.1 CrossRefGoogle Scholar
  16. Hungr O, McDougall S (2009) Two numerical models for landslide dynamic analysis. Comput Geosci 35:978–992.  https://doi.org/10.1016/j.cageo.2007.12.003 CrossRefGoogle Scholar
  17. Hungr O, Leroueil S, Picarelli L (2014) The Varnes classification of landslides types, an update. Landslides 11:167–194.  https://doi.org/10.1007/s10346-013-0436-y CrossRefGoogle Scholar
  18. Iverson RM (1997) The physics of debris flows. Rev Geophys 35:245–296.  https://doi.org/10.1029/97RG00426 CrossRefGoogle Scholar
  19. Iverson RM, Ouyang C (2015) Entrainment of bed material by earth-surface mass flows: review and reformulation of depth-integrated theory. Rev Geophys 53:27–58.  https://doi.org/10.1002/2013RG000447 CrossRefGoogle Scholar
  20. Iverson RM, Reid ME, Logan M, LaHusen RG, Godt JW, Griswold JG (2011) Positive feedback and momentum growth during debris-flow entrainment of wet bed sediment. Nat Geosci 4:116–121.  https://doi.org/10.1038/ngeo1040 CrossRefGoogle Scholar
  21. Kuo Y, Tsai Y, Chen Y, Shieh C, Miyamoto K, Itoh T (2013) Movement of deep-seated rainfall-induced landslide at Hsiaolin Village during Typhoon Morakot. Landslides 10:191–202.  https://doi.org/10.1007/s10346-012-0315-y CrossRefGoogle Scholar
  22. Liu KF, Li HC, Hsu YC (2009) Debris flow hazard assessment with numerical simulation. Nat Hazards 49:137–161.  https://doi.org/10.1007/s11069-008-9285-8 CrossRefGoogle Scholar
  23. Louaked M, Hanich L (1998) TVD scheme for the shallow water equations. J Hydraul Res 36:363–378.  https://doi.org/10.1080/00221689809498624 CrossRefGoogle Scholar
  24. Martinez RG, Lopez JL (2005) Debris flow of December 1999 in Venezuela. In: Jakob M, Hungr O (eds) Debris-flow hazards and related phenomena. Springer, Berlin Heidelberg, pp 520–538Google Scholar
  25. McDougall S (2006) A new continuum dynamic model for the analysis of extremely rapid landslide motion across complex 3D terrain. PhD thesis, University of British Columbia, Vancouver, B.C., Canada, 253 pagesGoogle Scholar
  26. McDougall S, Hungr O (2004) A model for the analysis of rapid landslide motion across three-dimensional terrain. Can Geotech J 41:1084–1097.  https://doi.org/10.1139/t04-052 CrossRefGoogle Scholar
  27. McDougall S, Hungr O (2005) Dynamic modelling of entrainment in rapid landslides. Can Geotech J 42:1437–1448.  https://doi.org/10.1139/t05-064 CrossRefGoogle Scholar
  28. Medina V, Hürlimann M, Bateman A (2008) Application of FLATMODEL, a 2D finite volume code, to debris flows in the northeastern part of the Iberian Peninsula. Landslides 5:127–142.  https://doi.org/10.1007/s10346-007-0102-3 CrossRefGoogle Scholar
  29. Ouyang C, He S, Xu Q, Luo Y, Zhang W (2013) A MacCormack-TVD finite difference method to simulate the mass flow in mountainous terrain with variable computational domain. Comput Geosci 52:1–10.  https://doi.org/10.1016/j.cageo.2012.08.024 CrossRefGoogle Scholar
  30. Ouyang C, He S, Xu Q (2015) MacCormack-TVD finite difference solution for dam break hydraulics over erodible sediment beds. J Hydraul Eng 141:06014026.  https://doi.org/10.1061/(ASCE)HY.1943-7900.0000986 CrossRefGoogle Scholar
  31. Ouyang C, Zhou K, Xu Q, Yin J, Peng D, Wang D, Li W (2017) Dynamic analysis and numerical modeling of the 2015 catastrophic landslide of the construction waste landfill at Guangming, Shenzhen, China. Landslides 14:705–718.  https://doi.org/10.1007/s10346-016-0764-9 CrossRefGoogle Scholar
  32. Pastor M, Haddad B, Sorbino G, Cuomo S, Drempetic V (2009) A depth-integrated, coupled SPH model for flow-like landslides and related phenomena. Int J Numer Anal Methods Geomech 33:143–172.  https://doi.org/10.1002/nag.705 CrossRefGoogle Scholar
  33. Pastor M, Blanc T, Haddad B, Petrone S, Sanchez Morles M, Drempetic V, IssIer D, Crosta GB, Cascini L, Sorbino G, Cuomo S (2014) Application of a SPH depth-integrated model to landslide run-out analysis. Landslides 11:793–812.  https://doi.org/10.1007/s10346-014-0484-y CrossRefGoogle Scholar
  34. Peng J, Fan Z, Wu D, Zhuang J, Dai F, Chen W, Zhao C (2015) Heavy rainfall triggered loess–mudstone landslide and subsequent debris flow in Tianshui, China. Eng Geol 186:79–90.  https://doi.org/10.1016/j.enggeo.2014.08.015 CrossRefGoogle Scholar
  35. Prakash P, Kalaiselvi V (2009) Numerical solution of hybrid fuzzy differential equations by predictor-corrector method. Int J Comput Math 86:121–134.  https://doi.org/10.1080/00207160802247620 CrossRefGoogle Scholar
  36. Sassa K, Nagai O, Solidum R, Yamazaki Y, Ohta H (2010) An integrated model simulating the initiation and motion of earthquake and rain induced rapid landslides and its application to the 2006 Leyte landslide. Landslides 7:219–236.  https://doi.org/10.1007/s10346-010-0230-z CrossRefGoogle Scholar
  37. Sassa K, He B, Dang K, Nagai O, Takara K (2014) Plenary: progress in landslide dynamics. In: Sassa K, Canuti P, Yin Y (eds) Landslide science for a safer geoenvironment. Springer, Cham, pp 37–67CrossRefGoogle Scholar
  38. Savage SB, Hutter K (1989) The motion of a finite mass of granular material down a rough incline. J Fluid Mech 199:177–215.  https://doi.org/10.1017/S0022112089000340 CrossRefGoogle Scholar
  39. Segre E, Deangeli C (1995) Cellular automaton for realistic modelling of landslides. Nonlinear Process Geophys 2:1–15.  https://doi.org/10.5194/npg-2-1-1995 CrossRefGoogle Scholar
  40. Stoker JJ (1957) Water waves: mathematical theory with applications. Interscience Publ Inc, New York, pp 333–341Google Scholar
  41. Streltsov AV, Woodroffe JR, Gekelman W, Pribyl P (2012) Modeling the propagation of whistler-mode waves in the presence of field-aligned density irregularities. Phys Plas 19:052104.  https://doi.org/10.1063/1.4719710 CrossRefGoogle Scholar
  42. Takahashi T (1981) Debris flow. Annu Rev Fluid Mech 13:57–77.  https://doi.org/10.1146/annurev.fl.13.010181.000421 CrossRefGoogle Scholar
  43. Tsai MP, Hsu YC, Li HC, Shu HM, Liu KF (2011) Application of simulation technique on debris flow hazard zone delineation: a case study in the Daniao tribe, eastern Taiwan. Nat Hazards Earth Syst Sci 11:3053–3062.  https://doi.org/10.5194/nhess-11-3053-2011 CrossRefGoogle Scholar
  44. Tseng MH, Chu CR (2000) Two-dimensional shallow water flows simulation using TVD-MacCormack scheme. J Hydraul Res 38:123–131.  https://doi.org/10.1080/00221680009498347 CrossRefGoogle Scholar
  45. Walters RA (2005) A semi-implicit finite element model for non-hydrostatic (dispersive) surface waves. Int J Numer Meth Fluids 49:721–737.  https://doi.org/10.1002/fld.1019 CrossRefGoogle Scholar
  46. Wang F, Sassa K (2010) Landslide simulation by a geotechnical model combined with a model for apparent friction change. Phys Chem Earth, Parts A/B/C 35:149–161.  https://doi.org/10.1016/j.pce.2009.07.006 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Geological EngineeringChang’an UniversityXi’anChina

Personalised recommendations