, Volume 15, Issue 5, pp 1029–1043 | Cite as

Numerical analysis of effect of baffle configuration on impact force exerted from rock avalanches

  • YuZhang Bi
  • YanJun Du
  • SiMing He
  • XinPo Sun
  • DongPo Wang
  • XinPo Li
  • Heng Liang
  • Yong Wu
Technical Note


In mountainous areas, channelized rock avalanches swarm downslope leading to large impact forces on building structures in residential areas. Arrays of rock avalanche baffles are usually installed in front of rigid barriers to attenuate the flow energy of rock avalanches. However, previous studies have not sufficiently addressed the mechanisms of interaction between the rock avalanches and baffles. In addition, empirical design approaches such as debris flow (Tang et al., Quat Int 250:63–73, 2012), rockfall (Spang and Rautenstrauch, 1237–1243, 1988), snow avalanches (Favier et al., 14:3–15, 2012), and rock avalanches (Manzella and Labiouse, Landslides 10:23–36, 2013), which are applied in natural geo-disasters mitigation cannot met construction requirements. This study presents details of numerical modeling using the discrete element method (DEM) to investigate the effect of the configuration of baffles (number and spacing of baffle columns and rows) on the impact force that rock avalanches exert on baffles. The numerical modeling is firstly conducted to provide insights into the flow interaction between rock avalanches and an array of baffles. Then, a modeling analysis is made to investigate the change pattern of the impact force with respect to baffle configurations. The results demonstrate that three crucial influencing factors (baffle row numbers, baffle column spacing, and baffle row spacing) have close relationship with energy dissipation of baffles. Interestingly, it is found that capacity of energy dissipation of baffles increases with increasing baffle row numbers and baffle row spacing, while it decreases with increasing baffle column spacing. The results obtained from this study are useful for facilitating design of baffles against rock avalanches.


Rock avalanches Discrete element method Baffles Interaction mechanisms Energy dissipation 



The authors thank all anonymous reviewers for helpful suggestions. The authors also thank Mr. Chen Zheng for conducting part of the laboratory tests.

Funding information

This work was supported by the National Natural Science Foundation of China (Grant No.41790433), NSFC-ICIMOD (Grant No. 41661144041), Science and Technology Plan Project of Sichuan Province (2016SZ0067), and Key Research and Development Projects of Sichuan Province (2017SZ0041).


  1. Ai J, Chen JF, Rotter JM, Ooi JY (2011) Assessment of rolling resistance models in discrete element simulations[J]. Powder Technol 206(3):269–282CrossRefGoogle Scholar
  2. Bi YZ, He SM, Li XP, Wu Y, Xu Q, Ouyang CJ, Su LJ, Wang H (2016a) Geo-engineered buffer capacity of two-layered absorbing system under the impact of rock avalanches based on Discrete Element Method[J]. J Mt Sci 13(5):917–929CrossRefGoogle Scholar
  3. Bi YZ, He SM, Li XP, Ouyang CJ, Wu Y (2016b) Effects of segregation in binary granular mixture avalanches down inclined chutes impinging on defending structures[J]. Environ Earth Sci 75(3):263Google Scholar
  4. Bobrowsky P, Highland L (2013) The landslide handbook-a guide to understanding landslides: a landmark publication for landslide education and preparedness[M]//landslides: global risk preparedness. Springer, Berlin, pp 75–84Google Scholar
  5. Bugnion L, McArdell BW, Bartelt P, Wendeler C (2012) Measurements of hillslope debris flow impact pressure on obstacles[J]. Landslides 9(2):179–187CrossRefGoogle Scholar
  6. Calvetti F, di Prisco C, Vairaktaris E (2016) Dry granular flows impacts on rigid obstacles: DEM evaluation of a design formula for the impact force[J]. Proc Eng 158:290–295CrossRefGoogle Scholar
  7. Choi CE, Ng CWW, Law RPH et al (2014a) Computational investigation of baffle configuration on impedance of channelized debris flow[J]. Can Geotech J 52(2):182–197CrossRefGoogle Scholar
  8. Choi CE, Ng CWW, Song D, Kwan JHS, Shiu HYK, Ho KKS, Koo RCH (2014b) Flume investigation of landslide debris–resisting baffles[J]. Can Geotech J 51(5):540–553CrossRefGoogle Scholar
  9. Cruden DM, Novograd S, Pilot GA et al (1990) Suggested nomenclature for landslides[J]. Bull Int Assoc Eng Geol 41(1):13–16CrossRefGoogle Scholar
  10. Cundall PA, Strack ODL (1979) A discrete numerical model for granular assemblies[J]. Geotechnique 29(1):47–65CrossRefGoogle Scholar
  11. Dai Z, Huang Y, Cheng H, Xu Q (2017) SPH model for fluid–structure interaction and its application to debris flow impact estimation[J]. Landslides 14(3):917–928CrossRefGoogle Scholar
  12. de Miranda S, Gentilini C, Gottardi G, Govoni L, Mentani A, Ubertini F (2015) Virtual testing of existing semi-rigid rockfall protection barriers[J]. Eng Struct 85:83–94CrossRefGoogle Scholar
  13. Favier P, Bertrand D, Eckert N et al (2012) Optimal design of snow avalanche passive defence structure using reliability approach to quantify buildings vulnerability[C]//EGU General Assembly Conference Abstracts. 14:3–15Google Scholar
  14. Hauksson S, Pagliardi M, Barbolini M, Jóhannesson T (2007) Laboratory measurements of impact forces of supercritical granular flow against mast-like obstacles[J]. Cold Reg Sci Technol 49(1):54–63CrossRefGoogle Scholar
  15. Huang X, Hanley KJ, O'Sullivan C, Kwok CY (2014) Exploring the influence of interparticle friction on critical state behaviour using DEM[J]. Int J Numer Anal Methods Geomech 38(12):1276–1297CrossRefGoogle Scholar
  16. Hungr O. A (1995) model for the runout analysis of rapid flow slides, debris flows, and avalanches[J]. Can Geotech J 32(4): 610–623.Google Scholar
  17. Hungr O, Leroueil S, Picarelli L (2014) The Varnes classification of landslide types, an update[J]. Landslides 11(2):167–194CrossRefGoogle Scholar
  18. Hutchinson JN (2002) Chalk flows from the coastal cliffs of northwest Europe[J]. Rev Eng Geol 15:257–302CrossRefGoogle Scholar
  19. Itasca, Consulting Group Inc., 2016. PFC3D particle flow code in 3 dimensions. User’s guide. MinneapolisGoogle Scholar
  20. Iwashita K, Oda M (1998) Rolling resistance at contacts in simulation of shear band development by DEM[J]. J Eng Mech 124(3):285–292.Google Scholar
  21. Iwashita K, Oda M (2000) Micro-deformation mechanism of shear banding process based on modified distinct element method[J]. Powder Technol 109(1):192–205CrossRefGoogle Scholar
  22. Jiang YJ, Towhata I (2013) Experimental study of dry granular flow and impact behavior against a rigid retaining wall[J]. Rock Mech Rock Eng 46(4):713–729CrossRefGoogle Scholar
  23. Kwan JSH, Koo RCH, Ng CWW (2015) Landslide mobility analysis for design of multiple debris-resisting barriers[J]. Can Geotech J 52(9):1345–1359CrossRefGoogle Scholar
  24. Law RPH, Choi CE, Ng CWW (2015) Discrete-element investigation of influence of granular debris flow baffles on rigid barrier impact[J]. Can Geotech J 53(1):179–185CrossRefGoogle Scholar
  25. Leonardi A, Wittel FK, Mendoza M, Vetter R, Herrmann HJ (2016) Particle–fluid–structure interaction for debris flow impact on flexible barriers[J]. Comp Aided Civ Inf Eng 31(5):323–333CrossRefGoogle Scholar
  26. Li XP, Wu Y, He SM et al (2016) Application of the material point method to simulate the post-failure runout processes of the Wangjiayan landslide[J]. Eng Geol 212:1–9CrossRefGoogle Scholar
  27. Liang H, He S, Lei X, et al (2017) Dynamic process simulation of construction solid waste (CSW) landfill landslide based on SPH considering dilatancy effects[J]. Bull Eng Geol Environ 1–15Google Scholar
  28. Mancarella D, Hungr O (2010) Analysis of run-up of granular avalanches against steep, adverse slopes and protective barriers[J]. Can Geotech J 47(8):827–841CrossRefGoogle Scholar
  29. Manzella I, Labiouse V (2013) Empirical and analytical analyses of laboratory granular flows to investigate rock avalanche propagation[J]. Landslides 10(1):23–36CrossRefGoogle Scholar
  30. Mast CM, Arduino P, Miller GR, Mackenzie-Helnwein P (2014) Avalanche and landslide simulation using the material point method: flow dynamics and force interaction with structures[J]. Comput Geosci 18(5):817–830CrossRefGoogle Scholar
  31. Ng CWW, Choi CE, Kwan JSH, Koo RCH, Shiu HYK, Ho KKS (2014) Effects of baffle transverse blockage on landslide debris impedance[J]. Proc Earth Planet Sci 9:3–13CrossRefGoogle Scholar
  32. Ng CWW, Choi CE, Song D, Kwan JHS, Koo RCH, Shiu HYK, Ho KKS (2015) Physical modeling of baffles influence on landslide debris mobility[J]. Landslides 12(1):1–18CrossRefGoogle Scholar
  33. Ng CWW, Choi CE, Goodwin GR et al (2017) Interaction between dry granular flow and deflectors[J]. Landslides 1–13Google Scholar
  34. O’Sullivan C (2011) Particle-based discrete element modeling: geomechanics perspective[J]. Int J Geomech 11(6):449–464CrossRefGoogle Scholar
  35. Oda M, Iwashita K, Kakiuchi T (1997) Importance of particle rotation in the mechanics of granular materials[J]. Powders Grains 97:207–210Google Scholar
  36. Savage S B (1984) The mechanics of rapid granular flows[M]. Advances in applied mechanics. Elsevier, 24:289–366.Google Scholar
  37. Savage SB, Hutter K (1989) The motion of a finite mass of granular material down a rough incline[J]. J Fluid Mech 199:177–215CrossRefGoogle Scholar
  38. Spang RM, Rautenstrauch RW (1988) Empirical and mathematical approaches to rockfall protection and their practical applications[C]//5th International Symposium on Landslides. 1237–1243Google Scholar
  39. Tang C, Zhu J, Chang M, Ding J, Qi X (2012) An empirical–statistical model for predicting debris-flow runout zones in the Wenchuan earthquake area[J]. Quat Int 250:63–73CrossRefGoogle Scholar
  40. Wensrich CM, Katterfeld A (2012) Rolling friction as a technique for modelling particle shape in DEM[J]. Powder Technol 217:409–417CrossRefGoogle Scholar
  41. Xing AG, Xu Q, Gan JJ (2015) On characteristics and dynamic analysis of the Niumian valley rock avalanche triggered by the 2008 Wenchuan earthquake, Sichuan, China[J]. Environ Earth Sci 73(7):3387–3401CrossRefGoogle Scholar
  42. Xu Q, Fan XM, Huang RQ, Westen CV (2009) Landslide dams triggered by the Wenchuan Earthquake, Sichuan Province, south west China[J]. Bull Eng Geol Environ 68(3):373–386CrossRefGoogle Scholar
  43. Zhan W, Fan X, Huang R, Pei X, Xu Q, Li W (2017) Empirical prediction for travel distance of channelized rock avalanches in the Wenchuan earthquake area[J]. Nat Hazards Earth Syst Sci 17(6):833–844CrossRefGoogle Scholar
  44. Zhang Y, Guo C, Lan H, Zhou N, Yao X (2015) Reactivation mechanism of ancient giant landslides in the tectonically active zone: a case study in Southwest China[J]. Environ Earth Sci 74(2):1719–1729CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • YuZhang Bi
    • 1
  • YanJun Du
    • 1
  • SiMing He
    • 2
    • 3
    • 4
  • XinPo Sun
    • 5
  • DongPo Wang
    • 6
  • XinPo Li
    • 2
    • 4
  • Heng Liang
    • 2
    • 4
  • Yong Wu
    • 2
    • 4
  1. 1.Institute of Geotechnical Engineering, School of TransportationSoutheast UniversityNanjingChina
  2. 2.Key laboratory of Mountain Hazards and Earth Surface ProcessChinese Academy of ScienceChengduChina
  3. 3.Center for Excellence in Tibetan Plateau Earth SciencesChinese Academy of SciencesBeijingChina
  4. 4.Institute of Mountain Hazards and Environment (IMHE)Chinese Academy of SciencesChengduChina
  5. 5.School of Civil EngineeringSichuan University of Science & EngineeringZigongChina
  6. 6.State Key Laboratory of Geohazard Prevention and Geoenvironment ProtectionChengdu University of TechnologyChengduChina

Personalised recommendations