Integrated Effect of Tillage and Herbicides on Wheat Crop

Wirkung der Kombination von Bodenbearbeitung und Herbiziden auf die Weizenernte

Abstract

Combining tillage with herbicides is an economical and efficient method for weed management and yield improvement in wheat. A two-year study was conducted having three tillage levels viz. 2″ tillage (shallow tillage, ST), 4″ tillage (conventional tillage, CT) and 6″ tillage (deep tillage, DT). The weed control treatments were five including three herbicides i.e. bromoxynil + MCPA (a broad-leaf weed killer), fenoxaprop-p-ethyl (a grass killer) and isoproturon + carfentrazone (a broad-spectrum herbicide), along with a hand weeding (HW) and a weedy check (WC). Results showed that the recorded parameters were significantly affected by the varying tillage depths, herbicide applications and their interactions. The weed density and biomass were the highest in ST and the lowest in DT, while among the weed control treatments, the weed density and biomass were highest in WC and lowest in HW. On the other hand, the DT treatments resulted in highest number of spikes m−2, 1000-grain weight (TGW), biological yield and grain yield; while ST showed the lowest values. Among the weed control treatments, the number of spikes, TGW, biological and grain yields were the highest in HW and the lowest in WC treatments. The herbicide isoproturon + carfentrazone performed the best among the three applied herbicides in diminishing the weed population density and biomass, and improving the number of spikes, TGW, biological and grain yields. In conclusion, the combination of deep tillage and herbicide isoproturon + carfentrazone can prove to be the best option for optimum weed management in wheat at higher altitudes.

Zusammenfassung

Die Kombination von Bodenbearbeitung und Herbiziden ist eine wirtschaftliche und effiziente Methode zur Unkrautbekämpfung und Ertragssteigerung bei Weizen. Es wurde eine zweijährige Studie mit drei Bodenbearbeitungsstufen durchgeführt, nämlich flache Bodenbearbeitung (shallow tillage, ST), konventionelle Bodenbearbeitung (conventional tillage, CT) und tiefe Bodenbearbeitung (deep tillage, DT). Zur Unkrautbekämpfung wurden fünf Behandlungen durchgeführt: drei Herbizide, nämlich Bromoxynil + MCPA (ein breitblättriges Unkrautvernichtungsmittel), Fenoxaprop-p-Ethyl (ein Unkrautvernichtungsmittel) und Isoproturon + Carfentrazon (ein Breitspektrumherbizid), Handjäten (hand weeding, HW) und Unkrautbeobachtung (weedy check, WC). Die Ergebnisse zeigten, dass die untersuchten Parameter durch die unterschiedlichen Bodenbearbeitungstiefen, Herbizidanwendungen und deren Wechselwirkungen signifikant beeinflusst wurden. Die Unkrautdichte und -biomasse war bei ST am höchsten und bei DT am niedrigsten, während bei den Behandlungen zur Unkrautkontrolle die Unkrautdichte und -biomasse bei WC am höchsten und bei HW am niedrigsten war. Andererseits ergaben die DT-Behandlungen die höchste Anzahl von Ähren pro m2, das höchste 1000-Korn-Gewicht (1000-grain weight, TGW), den größten biologischen Ertrag und Kornertrag, während ST die niedrigsten Werte aufwies. Unter den Unkrautbekämpfungsbehandlungen waren die Anzahl der Ähren, das TGW, der biologische Ertrag und der Kornertrag bei den HW-Behandlungen am höchsten und bei den WC-Behandlungen am niedrigsten. Das Herbizid Isoproturon + Carfentrazon zeigte unter den drei angewendeten Herbiziden die beste Leistung bei der Verringerung der Unkrautpopulationsdichte und -biomasse und erhöhte die Anzahl der Ähren, das TGW, den biologischen Ertrag und den Kornertrag. Zusammenfassend lässt sich sagen, dass die Kombination aus tiefer Bodenbearbeitung und dem Herbizid Isoproturon + Carfentrazon die beste Option für ein optimales Unkrautmanagement bei Weizen in höheren Lagen sein kann.

This is a preview of subscription content, access via your institution.

References

  1. Abbas T, Nadeem MA, Tanveer A, Ali HH, Farooq N (2018) Role of allelopathic crop mulches and reduced doses of tank-mixed herbicides in managing herbicide-resistant Phalaris minor in wheat. Crop Prot 210:245–250

    Article  Google Scholar 

  2. Aikins SHM, Afuakwa JJ, Owusu-Akuoko I (2012) Effect of four different tillage practices on maize performance under rainfed conditions. Agric Biol J N Am 3(1):25–30

    Article  Google Scholar 

  3. Alarcon R, Hernández-Plaza E, Navarrete L, Sánchez MJ, Escudero A, Hernanz JL, Sánchez-Giron V, Sánchez AM (2018) Effects of no-tillage and non-inversion tillage on weed community diversity and crop yield over nine years in a Mediterranean cereal-legume cropland. Soil Tillage Res 179:54–62

    Article  Google Scholar 

  4. Ali K, Khalil SK, Hussain Z, Munsif F, Din ID, Waqas M, Wagma (2011) Effect of various tillage methods and nitrogen management on weeds and maize performance. Pak J Weed Sci Res 17(3):253–262

    Google Scholar 

  5. Armengot L, Blanco-Moreno JM, Bàrberi P, Bocci G, Carlesi S, Aendekerk R, Berner A et al (2016) Tillage as a driver of change in weed communities: a functional perspective. Agric Ecosyst Environ 222:276–285

    Article  Google Scholar 

  6. Bajwa AA, Farooq M, Al-Sadi AM, Nawaz A, Jabran K, Siddique KHM (2020) Impact of climate change on biology and management of wheat pests. Crop Prot 137:105304

    CAS  Article  Google Scholar 

  7. Caroca RP, Candia PS, Hinojosa EA (2011) Characterization of the weed seed bank in zero and conventional tillage in central Chile. Chil J Agr Res 71(1):140–147

    Article  Google Scholar 

  8. Chen J, Zheng MJ, Pang DW, Yin YP, Han MM, Li YX, Luo YL, Xu X, Li Y, Wang ZL (2017) Straw return and appropriate tillage method improve grain yield and nitrogen efficiency of winter wheat. J Integr Agric 16(8):1708–1719

    Article  Google Scholar 

  9. Cheng X, Ni H (2013) Weed control efficacy and winter wheat safety of a novel herbicide HW02. Crop Prot 43:246–250

    CAS  Article  Google Scholar 

  10. Din SU, Ramzan M, Khan R, Rahman MU, Haroon M, Khan TA, Samad A (2013) Impact of tillage and mulching practices on weed biomass and yield components of maize under rainfed conditions. Pak J Weed Sci Res 19(2):201–208

    Google Scholar 

  11. Dorn B, Stadler M, van-der-Heijden M, Streit B (2013) Regulation of cover crops and weeds using a roll-chopper for herbicide reduction in no-tillage winter wheat. Soil Till Res 134:121–132

    Article  Google Scholar 

  12. Fiera C, Ulrich W, Popescu D, Buchholz J, Querner P, Bunea C, Strauss P, Bauer T, Kratschmer S, Winter S, Zaller JG (2020) Tillage intensity and herbicide application influence surface-active springtail (Collembola) communities in Romanian vineyards. Agric Ecosys Environ 300:107006. https://doi.org/10.1016/j.agee.2020.107006

    CAS  Article  Google Scholar 

  13. Gonzalez-Andujar JL, Aguilera MJ, Davis AS, Navarrete L (2019) Disentangling weed diversity and weather impacts on long-term crop productivity in a wheat-legume rotation. Field Crop Res 232:24–29

    Article  Google Scholar 

  14. Government of Pakistan (2017) Economic Survey of Pakistan, Finance Division, Economic Advisor’s Wing, Islamabad. Pp. 18

  15. Jabran K, Mahajan G, Sardana V, Chauhan BS (2015) Allelopathy for weed control in agricultural systems. Crop Protec 72:57–65

    Article  Google Scholar 

  16. Jabran K, Mahmood K, Melander B, Bajwaand AA, Kudsk P (2017) Weed dynamics and management in wheat. Adv Agron 145:97–166

    Article  Google Scholar 

  17. Jan MT, Shah P, Hollington PA, Khan MJ, Sohail Q (2009) Agriculture research: design and analysis, a monograph. NWFP Agricultural University, Peshawar

    Google Scholar 

  18. Kalinina O, Zeller SL, Schmid B (2015) Persistence of seeds, seedlings and plants, performance of transgenic wheat in weed communities in the field and effects on fallow weed diversity. Persp Plant Ecol Evol Syst 17(6):421–433

    Article  Google Scholar 

  19. Kolodziejczyk M (2015) The effect of living mulches and conventional methods of weed control on weed infestation and potato yield. Sci Hort 191:127–133

    Article  Google Scholar 

  20. Kuhling I, Redozubov D, Broll G, Trautz D (2017) Impact of tillage, seeding rate and seeding depth on soil moisture and dryland spring wheat yield in Western Siberia. Soil Till Res 170:43–52

    Article  Google Scholar 

  21. MacLaren C, Labuschagne J, Swanepoel PA (2021) Tillage practices affect weeds differently in monoculture vs. crop rotation. Soil Till Res 205:104795

    Article  Google Scholar 

  22. Mavunganidze Z, Madakadze IC, Nyamangara J, Mafongoya P (2014) The impact of tillage system and herbicides on weed density, diversity and yield of cotton (Gossipium hirsutum L.) and maize (Zea mays L.) under the small holder sector. Crop Prot 58:25–32

    CAS  Article  Google Scholar 

  23. Mishra JS, Singh VP (2012) Tillage and weed control effects on productivity of a dry seeded rice–wheat system on a Vertisol in Central India. Soil Till Res 123:11–20

    Article  Google Scholar 

  24. Mohan A, Schillinger WF, Gill KS (2013) Wheat seedling emergence from deep planting depths and its relationship with coleoptile length. Plos One 8(9):e73314. https://doi.org/10.1371/journal.pone.0073314

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Nakka S, Jugulam M, Peterson D, Asif M (2019) Herbicide resistance: development of wheat production systems and current status of resistant weeds in wheat cropping systems. Crop J 7(6):750–760

    Article  Google Scholar 

  26. Nandan R, Singh V, Kumar V, Singh SS, Poonia SP (2020) Viable weed seed density and diversity in soil and crop productivity under conservation agriculture practices in rice-based cropping systems. Crop Prot. https://doi.org/10.1016/j.cropro.2020.105210 (Article no. 105210)

    Article  Google Scholar 

  27. Pakeman RJ, Small JL, Torvell L (2012) Edaphic factors influence the longevity of seeds in the soil. Plant Ecol 213:57–65

    Article  Google Scholar 

  28. Petit S, Trichard A, Biju-Duval L, McLaughlin ÓB, Bohan DA (2017) Interactions between conservation agricultural practice and landscape composition promote weed seed predation by invertebrates. Agric Ecosyst Environ 240:45–53

    Article  Google Scholar 

  29. Piggin C, Haddad A, Khalil Y, Loss S, Pala M (2015) Effects of tillage and time of sowing on bread wheat, chickpea, barley and lentil grown in rotation in rainfed systems in Syria. Field Crop Res 173:57–67

    Article  Google Scholar 

  30. Reiss A, Fomsgaard IS, Mathiassen SK, Kudsk P (2018) Weed suppressive traits of winter cereals: allelopathy and competition. Biochem Syst Ecol 76:35–41

    CAS  Article  Google Scholar 

  31. RMC (2019) Weather data achieved from Regional Meteorological Center (RMC) Peshawar. RMC, Khyber Pakhtunkhwa

    Google Scholar 

  32. Santín-Montanya MI, Martín-Lammerding D, Zambrana E, Tenorio JL (2016) Management of weed emergence and weed seed bank in response to different tillage, cropping systems and selected soil properties. Soil Till Res 161:38–46

    Article  Google Scholar 

  33. Sarangi D, Jhala AJ (2018) Comparison of a premix of atrazine, bicyclopyrone, mesotrione, and s‑metolachlor with other pre-emergence herbicides for weed control and corn yield in no-tillage and reduced-tillage production systems in Nebraska, USA. Soil Till Res 178:82–91

    Article  Google Scholar 

  34. Schuster MZ, Gastal F, Doisy D, Charrier X, Barbu CM (2020) Weed regulation by crop and grassland competition: critical biomass level and persistence rate. Eur J Agron. https://doi.org/10.1016/j.eja.2019.125963 (Article 125963)

    Article  Google Scholar 

  35. Shao Y, Xie Y, Wang C, Yue J, Yao Y, Li X, Liu W, Zhu Y, Guo T (2017) Effects of different soil conservation tillage approaches on soil nutrients, water use and wheat-maize yield in rainfed dry-land regions of North China. Europ J Agron 81:37–45

    Article  Google Scholar 

  36. Singh M, Bhullar MS, Chauhan BS (2015) Seed bank dynamics and emergence pattern of weeds as affected by tillage systems in dry direct-seeded rice. Crop Prot 67:168–177

    Article  Google Scholar 

  37. Susha VS, Das TK, Nath CP, Pandey R, Ghosh S (2018) Impacts of tillage and herbicide mixture on weed interference, agronomic productivity and profitability of a maize—Wheat system in the North-western Indo-Gangetic Plains. Field Crop Res 219:180–191

    Article  Google Scholar 

  38. Tiwari S, Singh P, Tiwari R, Meena KK, Yandigeri M, Singh DP, Arora DK (2011) Salt-tolerant rhizobacteria-mediated induced tolerance in wheat (Triticum aestivum) and chemical diversity in rhizosphere enhance plant growth. Biol Fertil Soils 47:907–916

    CAS  Article  Google Scholar 

  39. Usman K, Khalil SK, Khan MA (2010) Impact of tillage and herbicides on weed density and some physiological traits of wheat under rice-wheat cropping system. Sarhad J Agric 26(4):475–487

    Google Scholar 

  40. Usman K, Khan N, Khan MU, Rehman A, Ghulam S (2013) Impact of tillage and herbicides on weed density, yield and quality of cotton in wheat based cropping system. J Integ Agric 12(9):1568–1579

    Article  Google Scholar 

  41. Villora RA, Plaza EH, Navarrete L, Sánchez MJ, Sánchez AM (2019) Climate and tillage system drive weed communities’ functional diversity in a Mediterranean cereal-legume rotation. Agric Ecosyst Environ. https://doi.org/10.1016/j.agee.2019.106574 (Article 106574)

    Article  Google Scholar 

  42. Wikipedia (2019) https://en.wikipedia.org/wiki/Chitral. Accessed 17 Sept 2019

  43. Yun-he H, Ping-lei G, Sheng Q (2019) An investigation of weed seed banks reveals similar potential weed community diversity among three different farmland types in Anhui Province, China. J Integ Agric 18(4):927–937

    Article  Google Scholar 

  44. Zia-ul-Haq M, Khaliq A, Qiang S, Matloob A, Aslam Z (2019) Weed growth, herbicide efficacy, and rice productivity in dry seeded paddy field under different wheat stubble management methods. J Integ Agric 18(4):907–926

    Article  Google Scholar 

Download references

Acknowledgements

The principal author is indebted to the HEC Islamabad for funding of the research through the grant no. 5142 under the title of ‘weed seed bank studies in wheat and maize growing areas for sustainable weed management and soil fertility’.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zahid Hussain.

Ethics declarations

Conflict of interest

Z. Hussain, Luqman, S. Hashim and K. Jabran declare that they have no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hussain, Z., Luqman, Hashim, S. et al. Integrated Effect of Tillage and Herbicides on Wheat Crop. Gesunde Pflanzen (2021). https://doi.org/10.1007/s10343-021-00549-3

Download citation

Keywords

  • Herbicides
  • Higher altitudes
  • Tillage
  • Weeds
  • Wheat

Schlüsselwörter

  • Herbizide
  • Höhenlage
  • Bodenbearbeitung
  • Unkraut
  • Weizen