Evaluation of the Effects of Plant Growth Promoting Rhizobacteria (PGPR) on Yield and Quality Parameters of Tomato Plants in Organic Agriculture by Principal Component Analysis (PCA)

Bewertung der Auswirkungen von pflanzenwachstumsfördernden Rhizobakterien (PGPR) auf Ertrags- und Qualitätsparameter von Tomatenpflanzen im ökologischen Landbau mittels Hauptkomponentenanalyse

Abstract

Our research was carried out to determine the effects of plant growth promoting rhizobacteria (PGPR) on the yield and quality parameters of tomato plants in organic farming conditions. In our study, Bacillus megaterium M‑3, Paenibacillus polymxa, Burkholderia cepacia, Azospirillum sp-245 bacterial strains were applied by three different applications methods such as to the soil, root region and leaves. The research was carried out as field experiment in 37 plots and 10 plants per plot. As a result of the study, it was determined that different PGPR applications significantly affect the yield and quality parameters of tomato plant in organic agriculture. When the results were evaluated, the highest yield was obtained as 1533 kg da−1 with foliar application of B. megaterium M‑3 bacteria. B. megaterium M‑3 bacteria application to leaves increased that yield by about 20% compared to the control. It was determined that the bacteria applications did not have any significant effect on fruit size, fruit width and fruit weight. However, PGPR applications increased the amount of plant nutrients in the leaf, and pH, soluble solid contents (SSC), the rate of titratable acidity and the vitamin C values in the fruit. In conclusion, some PGPR bacteria as B. megaterium M‑3, P. polymxa, B. cepacia, A. sp-245 increased the yield of the product and have a positive effect on quality parameters. As a result of the PCA (principal component analysis), PC1 alone explained 35% of the total variance and PC2 explained 24%. PC1 was found to be associated with soluble solid matter, vitamin C, titratable acidity, pH and EC, PC2 was found to be fruit yield and marketable yield, and PC3 was found to be scrap yield and marketable yield ratio.

Zusammenfassung

Unsere Forschung wurde durchgeführt, um die Auswirkungen von pflanzenwachstumsfördernden Bakterien (plants growth promoting rhizobacteria, PGPR) auf die Ertrags- und Qualitätsparameter von Tomatenpflanzen im ökologischen Landbau zu untersuchen. In unserer Studie wurden verschiedene Bakterienstämme (Bacillus megaterium M‑3, Paenibacillus polymxa, Burkholderia cepacia und Azospirillum sp-245) in drei verschiedenen Applikationsmethoden getestet (Boden, Wurzelregion und Blätter). Die Forschung wurde als Feldversuch mit 37 Parzellen und 10 Pflanzen pro Parzelle durchgeführt. Als Ergebnis der Studie wurde festgestellt, dass verschiedene PGPR-Anwendungen den Ertrag und die Qualitätsparameter von Tomatenpflanzen im ökologischen Landbau signifikant beeinflussen. Bei Auswertung der Ergebnisse wurde der höchste Tomatenertrag mit 1533 kg da−1 bei Blattapplikation von B. megaterium M‑3-Bakterien erzielt, was einer Ertragszunahme von 20 % im Vergleich zur Kontrolle entsprach. Die Bakterienanwendungen hatten keinen signifikanten Effekt auf Fruchtgröße, Fruchtbreite und Fruchtgewicht. PGPR-Anwendungen erhöhten jedoch die Konzentration an Pflanzennährstoffen im Blatt, den pH-Wert, den Gehalt an löslichen Feststoffen, die Konzentration titrierbarer Säure und den Vitamin-C-Gehalt in den Früchten. Zusammenfassend lässt sich sagen, dass einige PGPR-Bakterien, wie B. megaterium M‑3, P. polymxa, B. cepacian und A. sp-245, den Tomatenertrag erhöhten und sich positiv auf die Qualitätsparameter auswirkten. Als Ergebnis der Hauptkomponentenanalyse (principal component analysis, PCA) erklärte PC1 allein 35 % der Gesamtvarianz und PC2 24 %. Es wurde festgestellt, dass PC1 mit löslichen Feststoffen, Vitamin C, titrierbarer Säure, pH-Wert und elektrischer Leitfähigkeit assoziiert ist, PC2 mit dem Fruchtertrag und dem marktfähigen Ertrag und PC3 mit dem Ausschuss und der marktfähigen Renditenquote.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Abbas Z, Okon Y (1993) Plant growth promotion by Azotobacter paspali in the rhizosphere. Soil Biol Biochem 25:1075–1083

    Article  Google Scholar 

  2. Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ Sci 26:1–20

    Article  Google Scholar 

  3. Anonymous (2002) Determination of titratable acidity of fruit and vegetable products, TS 1125 ISO 750. Turkish Standards Institute, Ankara

    Google Scholar 

  4. Bremner JM, Mulvaney CS (1982) Nitrogen total. Methods of soil analysis part2. Chemical and microbiological properties second edition. Agronomy 9(Part 2):597–622

    Google Scholar 

  5. Caballero-Mellado J, Onofre-Lemus J, Santos PEL, Martiinez-Aguilar L (2007) The tomatorhizosphere, an environment rich in nitrogen-fixing Burkholderia species with capabilities ofinterest for agriculture and bioremediation. Appl Environ Microbiol 73:5308–5319

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. Cakmakci R (2005a) Use of plant growth promoting Rhizobacteria in agriculture. Ataturk Uni. J Agric Fac 36(1):97–107

    Google Scholar 

  7. Cakmakci R (2005b) Posphate Solubilizing Bacteria and Their Role In Plant Growth Promotion. J Agric Fac 19(35):93–108

    Google Scholar 

  8. Cakmakci R, Erdogan U (2006) Recent developments in the use of plant growth promoter rhizobacteria: organic agriculture perspective and applications. Organic Agriculture Cong, Yalova

    Google Scholar 

  9. Cakmakci R, Kantar F, Şahin F (2001) Effect of N2-fixing bacterial İnoculations on yield of sugar beet and barley. J Plant Nutr Soil Sci 164(5):527–531

    CAS  Article  Google Scholar 

  10. Çakmakçi R, Dönmez F, Aydın A, Şahin F (2006) Growth promotion of plants by plant growth-promoting rhizobacteria under greenhouse and two different field soil conditions. Soil Biology and Biochemistry 38(6):1482–1487

    Article  CAS  Google Scholar 

  11. Cakmakci R, Erat M, Erdoğan Ü, Dönmez F (2007) The influence of plant growth-promoting rhizobacteria on growth and enzyme activities in wheat and spinach plants. J Plant Nutr Soil Sci 170:288–295

    CAS  Article  Google Scholar 

  12. Çakmakçı R, Dönmez M, Ertürk Y, Erat M, Haznedar A, Sekban R (2010) Diversity and metabolic potential of culturable bacteria from the rhizosphere of Turkish tea grown in acidic soils. Plant and Soil 332(1/2):299–318

    Article  CAS  Google Scholar 

  13. Cemeroğlu B (1992) Basic analysis methods in fruit and vegetable processing industry. Biltav University Books Series, No: 02‑2. Biltav University, Ankara

    Google Scholar 

  14. Chaban IA, Kononenko NV, Gulevich AA, Bogoutdinova LR, Khaliluev MR, Baranova EN (2020) Morphological features of the anther development in tomato plants with non-specific male sterility. Biology 9(2):32. https://doi.org/10.3390/biology9020032

    Article  PubMed Central  Google Scholar 

  15. Chabot R, Antoun H, Cescas MP (1993) Stimulation de la croissance du maïs et de la laitue romaine par des microorgan- ismes dissolvant le phosphore inorganique. Can J Microbiol 39:941–947

    Article  Google Scholar 

  16. Erman M, Kotan R, Çakmakçı R, Çığ F, Karagöz K, Sezen M (2010) Effect of nitrogen fixing and phosphate-solubilizing Rhizobacteria isolated from Van Lake Basin on the growth and quality properties in wheat and sugar beet. Turkey IV. Organic Farming Symposium, 28 June – 1 July, Erzurum, Turkey, 325–329

  17. Esitken A, Ercisli S, Sevik İ, Sahin F (2003b) Effect of indole-3-butyric acid and different strains of agrobacterium rubi on adventitive root formation from softwood and semi-hardwood wild sour cherry cuttings. Turk J Agric For 27:37–42

    CAS  Google Scholar 

  18. Esitken A, Kalidag H, Ercisli S, Turan M, Sahin F (2003a) The effects of spraying a growth promoting bacterium on the yield, growth and nutrient element composition of leaves of apricot (Prunus armeniaca L.cv. Hacıhaliloglu). Aust J Agric Res 54:377–380

    Article  Google Scholar 

  19. Esitken A, Karlidag H, Ercisli S, Sahin F (2002) Effects of foliar application of Bacillus substilis Osu-142 on the yield, growth and control of shot-hole disease (Coryneum blight) of apricot. Gartenbauwissenschaft 67:139–142

    CAS  Google Scholar 

  20. Esitken A, Yildiz HE, Ercisli S, Donmez M, Turan M, Gunes A (2010) Effects of plant growth promoting bacteria (PGPB) on yield, growth and nutrient contents of organically grown strawberry. Scientia Horticulturae 124(1):62–66

    CAS  Article  Google Scholar 

  21. Freitas ADS, Vieira CL, Santos CERS, Stamford NP, Lyra MCCP (2007) Caracterização de rizóbios isolados de Jacatupé cultivado em solo salino no Estado de Pernanbuco, Brasil. Bragantia 66:497–504 (article in Portuguese)

    Article  Google Scholar 

  22. Ganzalez-Cebrino F, Lozano M, Ayuso MC, Bernalte MJ, Vidal-Aragon MC, Gonzalez-Gomez D (2011) Characterization of traditional tomato varieties grown in organic conditions. Span J Agric Res 9(2):444–452

    Article  Google Scholar 

  23. Gee GW, Hortage KH (1986) Particle size analysis. Methods of soil analysis. Part physical and minerological methods second edition. Agronomy 9(2):383–441

    Google Scholar 

  24. Güneş A, Ataoğlu N, Turan M, Eşitken A, Ketterings QM (2009) Effects of phosphate-solubilizing microorganisms on strawberry yield and nutrient concentrations. J Plant Nutr Soil Sci 172:385–392

    Article  CAS  Google Scholar 

  25. Güneş A, Karagöz K, Turan M, Kotan R, Yıldırım E, Çakmakçı R, Şahin F (2015) Fertilizer efficiency of some plant growth promoting Rhizobacteria for plant growth. Res J Soil Biol 7(2):28–45

    Article  Google Scholar 

  26. Güneş A, Turan M, Güllüce M, Şahin F, Karaman MR (2013) Effects of different bacteria application on solubility of rock phosphate. Soil Water J 2(1):53–61

    Google Scholar 

  27. Jackson ML (1962) Soil Chemical Analysis. Prentice Hall, Inc. Eaglewood Cliffs, USA. pp 219–221

    Google Scholar 

  28. Khalid A, Arshad M, Shaharoona B, Mahmoud T (2009) Plant growth promoting rhizobacteria and sustainable agriculture. In: Khan MS et al (ed) Microbial strategies for crop improvement. Springer, Berlin https://doi.org/10.1007/978-3-642-01979-1_7

    Google Scholar 

  29. Khalid A, Arshad M, Zahir ZA (2004) Screening plant growth-promoting rhizobacteria for improving growth and yield of wheat. J Appl Microbiol 96(3):473–480

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. Kidoğlu F, Gul A, Özaktan H, Tuzel Y (2008) Effect of rhizobacteria on plant growth of different vegetables. Proc. International Symp. High Tech. Gren. System Manag. Acta Hortic 801:1471–1477

    Article  Google Scholar 

  31. Kotan R, Cakir A, Dadasoglu F, Aydin T, Cakmakci R, Ozer H, Kordali S, Mete E, Dikbas N (2010) Antibacterial activities of essential oils and extracts of Turkish and species against plant pathogenic bacteria. J Science Food Agriculture 90(1):145–160

    CAS  Article  Google Scholar 

  32. Kotan R, Sahin F, Demirci E, Özbek A, Eken C, Miller SA (1999) Evaluation of antagonistic bacteria for biological control of Fusarium dry rot of potato. Phytopathology, 89(6):41

    Google Scholar 

  33. Lindsay WL, Norvell WA (1978) Development of a DTPA Soil Test for Zinc, Iron, Manganese, and Copper. Soil Science Soc America J 42(3):421–428

    CAS  Article  Google Scholar 

  34. Lucy M, Reed E, Glick BR (2004) Application of free living plant growth-promoting rhizobacteria. Antonie Van Leeuwenhoek 86(1):1–25

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. Mclean EO (1982) Soil pH and lime requirement. Methods of soil analysis part2. Chemical and microbiological properties second edition. Agronamy 9(Part 2):199–224

    Google Scholar 

  36. Mena-Violante HG, Olalde-Portugal V (2007) Alteration of tomato fruit quality by root inoculation with plant growth-promoting rhizobacteria (PGPR) Bacillus subtilis BEB-13bs. Sci Hortic 113:103–106

    CAS  Article  Google Scholar 

  37. Mia MAB, Shamsuddin ZH, Mahmood M (2012) Effects of rhizobia and plant growth promoting bacteria inoculation on germination and seedling vigor of lowland rice. Afr J Biotechnol 11:3758–3765

    Google Scholar 

  38. Miransari M (2013) Soil microbes and availability of soil nutrients. Acta Physiol Plant 35:3075–3084

    CAS  Article  Google Scholar 

  39. Nelson DW, Sommers LE (1982) Organic matter. Methods of soil analysis part2. Chemical and microbiological properties second edition. Agronamy 9(Part 2):574–579

    Google Scholar 

  40. Olsen SR, Cole CV, Watanabe FS, Dean LA (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA circular 939. US Government Printing Office, Washington DC

    Google Scholar 

  41. Singh DB, Singh HB, Prabha R (2016) Microbial Inoculants in sustainable agricultural productivity. Springer, Delhi https://doi.org/10.1007/978-81-322-2647-5

    Google Scholar 

  42. Şahin F, Cakmakci R, Kantar F (2004) Sugarbeet and barley yields in relation to inoculation with N2-fixing and phosphate solubilizing bacteria. Plant Soil 265:123–129

    Article  Google Scholar 

  43. Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Elsevier, New York, p 605

    Google Scholar 

  44. Straka RP, Stokes JL (1957) Rapid destruction of bacteria in commonly used diluentes and its elimination. Appl Environ Microbiol 5:21–25

    CAS  Article  Google Scholar 

  45. Sumner ME, Miller WP (1996) Cation Exchange Capacity and Exchange Coefficients. In: Sparks DL (ed) Methods of Soil Analysis Part 3: Chemical Methods, SSSA Book Series 5, Soil Science Society of America, Madison, Wisconsin, 1201–1230

  46. Thomas GW (1982) Exchangable cations, In: A.I.Page, R.H. Mille and D.R. Keeney (Eds), Methods of soil analysis 2, Agronomy monograph No. 9. 2nd Edition American Society of Agronomy Madison, WI. U.S.A. pp 159–165

    Google Scholar 

  47. Tilak KVBR, Ranganayaki N, Pal KK, De R, Saxena AK, Shekhar NC, Mittal S, Tripathi AK, Johri BN (2005) Diversity of plant growth and soil health supporting bacteria. Curr Sci 89:136–150

    CAS  Google Scholar 

  48. Turan M, Ataoglu N, Sahin F (2007) Effects of Bacillus FS‑3 on growth of tomato (Lycopersicon esculentum L.) plants and availability of phosphorus in soil. Plant Soıl Envıronment 53(2):58–64

    CAS  Google Scholar 

  49. Turan M, Ataoğlu N, Sezen Y (2004) Phosphorus-degrading bacteria (Bacillus megaterium), tomato (Lycopersicon esculentum L.) effects on yield and phosphorus uptake of crops. Turkey 3rd National Fertilizer Congress, Agriculture-Industry-Environment, Tokat, 11–13 October. vol 1, pp 939–944

    Google Scholar 

  50. Turan M, Ekinci M, Yildirim E, Gunes A, Karagoz K, Kotan R, Dursun A (2014) Plant growth-promoting rhizobacteria improved growth, nutrient, and hormone content of cabbage (Brassica oleracea) seedlings. Turk J Agric For 38(3):327–333

    CAS  Article  Google Scholar 

  51. Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    CAS  Article  Google Scholar 

  52. Yildirim E, Karlidag H, Turan M, Dursun A, Goktepe F (2011) Growth, nutrient uptake and yield promotion of broccoli by plant growth promoting rhizobacteria with manure. Hort Science 46:932–936

    CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Erciyes University BAP (FYL-2017-7209) for providing financial support in conducting this study. We also thank Assist. Prof. Dr. Erman Beyzi, for the PCA used in the study.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Adem Gunes.

Ethics declarations

Conflict of interest

B. Yagmur and A. Gunes declare that they have no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yagmur, B., Gunes, A. Evaluation of the Effects of Plant Growth Promoting Rhizobacteria (PGPR) on Yield and Quality Parameters of Tomato Plants in Organic Agriculture by Principal Component Analysis (PCA). Gesunde Pflanzen (2021). https://doi.org/10.1007/s10343-021-00543-9

Download citation

Keywords

  • Tomato
  • Organic agriculture
  • PGPR
  • Principal component analysis

Schlüsselwörter

  • Tomate
  • Ökologischer Landbau
  • PGPR
  • Hauptkomponentenanalyse