Skip to main content
Log in

Exogenous Silicon Protects Brassica napus Plants from Salinity-Induced Oxidative Stress Through the Modulation of AsA-GSH Pathway, Thiol-Dependent Antioxidant Enzymes and Glyoxalase Systems

Exogenes Silizium schützt Brassica-napus-Pflanzen vor salzinduziertem oxidativen Stress durch die Modulation des AsA-GSH-Zyklus, thiolabhängiger antioxidativer Enzyme und der Glyoxalase-Systeme

  • Original Article
  • Published:
Gesunde Pflanzen Aims and scope Submit manuscript

Abstract

Although silicon (Si) has showed its potential role in mitigating abiotic stress-induced damages in many plant species its role in coordinated induction of antioxidant defense is yet to be elucidated. Therefore, we studied rapeseed (Brassica napus) seedlings applied with exogenous Si for changes occurring in antioxidant defense and glyoxalase systems. Seedlings (12-day-old) grown semi-hydroponically were exposed to Si (silicon dioxide, SiO2; 1 mM) solely and in combination with NaCl (100 and 200 mM) for 48 h. Salinity created oxidative damage by increasing H2O2 and malondialdehyde (MDA) contents resulting in disruption of antioxidant defense system and in arousing methylglyoxal (MG) toxicity by the down-regulation of glyoxalase enzyme activities. Exogenous Si treatment showed reduction of both H2O2 and MDA contents and up-regulation of antioxidant components including the activities of related enzymes (APX, MDHAR, DHAR, GR, GST, GPX and CAT) and the contents of AsA and GSH. Enhanced activities of glyoxalase I (Gly I) and glyoxalase II (Gly II) detoxified the toxic MG. Thus, this study clearly indicates that Si improved plant tolerance to salinity stress through enhancement of both antioxidant defense and glyoxalase systems that led to reduced oxidative damage and MG toxicity.

Zusammenfassung

Obwohl Silizium (Si) seine potenzielle Rolle bei der Abschwächung abiotischer stressinduzierter Schäden bei vielen Pflanzenarten gezeigt hat, ist seine Rolle bei der koordinierten Induktion der antioxidativen Abwehr noch zu klären. Daher untersuchten wir Rapskeimlinge (Brassica napus), die mit exogenem Si behandelt wurden, auf Veränderungen in der antioxidativen Abwehr und der Glyoxalase-Systeme. Keimlinge (12 Tage alt), die semi-hydroponisch gezüchtet wurden, wurden 48 h Si (Siliciumdioxid, SiO2; 1 mM) ausgesetzt – allein und in Kombination mit NaCl (100 und 200 mM). Die Salinität verursachte oxidative Schäden durch die Erhöhung des H2O2- und Malondialdehyd (MDA)-Gehalts, was zu einer Störung des antioxidativen Abwehrsystems und zur Stimulation der Methylglyoxal (MG)-Toxizität durch die Herunterregulierung der Glyoxalase-Enzymaktivitäten führte. Die exogene Si-Behandlung zeigte eine Reduktion der H2O2- und der MDA-Gehalte sowie eine Hochregulierung der antioxidativen Komponenten einschließlich der Aktivitäten verwandter Enzyme (APX, MDHAR, DHAR, GR, GST, GPX und CAT) und der AsA- und GSH-Gehalte. Verstärkte Aktivitäten von Glyoxalase I (Gly I) und Glyoxalase II (Gly II) entgifteten das toxische MG. Somit zeigt diese Studie deutlich, dass Si die Toleranz von Pflanzen gegenüber Salzstress durch die Steigerung der antioxidativen Abwehr und der Aktivität der Glyoxalase-Systeme verbesserte, was zu einer verringerten oxidativen Schädigung und MG-Toxizität führte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ali S, Farooq MA, Yasmeen T, Hussain S, Arif MS, Abbas F, Bharwana SA, Zhang G (2013) The influence of silicon on barley growth, photosynthesis and ultra-structure under chromium stress. Ecotoxicol Environ Saf 89:66–72

    Article  CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  Google Scholar 

  • Assaha DVM, Liu L, Mekawy AMM, Ueda A, Nagaoka T, Saneoka H (2015) Effect of salt stress on Na accumulation, antioxidant enzyme activities and activity of cell wall peroxidase of huckleberry (Solanum ) and eggplant (Solanum melongena). Int J Agric Biol 17(6):1149–1156

    Article  CAS  Google Scholar 

  • Bela K, Horváth E, Gallé A, Szabados L, Tari I, Csiszár J (2015) Plant glutathione peroxidases: emerging role of the antioxidant enzymes in plant development and stress responses. J Plant Physiol 176:192–201

    Article  CAS  Google Scholar 

  • Booth J, Boyland E, Sims P (1961) An enzyme from rat liver catalyzing conjugation. Biochem J 79(3):516–524

    Article  CAS  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254

    Article  CAS  Google Scholar 

  • Cakmak I, Strbac D, Marschner H (1993) Activities of hydrogenperoxide scavenging enzymes in germinating wheat seeds. J Exp Bot 44(1):127–132

    Article  CAS  Google Scholar 

  • Coskun D, Britto DT, Huynh WQ, Kronzucker HJ (2016) The role of silicon in higher plants under salinity and drought stress. Front Plant Sci 7:1072

    Article  Google Scholar 

  • Debona D, Rodrigues FA, Rios JA, Nascimento KJT, Silva LC (2014) The effect of silicon on antioxidant metabolism of wheat leaves infected by Pyricularia oryzae. Plant Pathol 63:581–589

    Article  CAS  Google Scholar 

  • Dixon DP, Skipsey M, Edwards R (2010) Roles for glutathione transferases in plant secondary metabolism. Phytochemistry 71(4):338–350

    Article  CAS  Google Scholar 

  • El-Shabrawi H, Kumar B, Kaul T, Reddy MK, Singla-Pareek SL, Sopory SK (2010) Redox homeostasis, antioxidant defense, and methylglyoxal detoxification as markers for salt tolerance in Pokkali rice. Protoplasma 245(1–4):85–96

    Article  CAS  Google Scholar 

  • Elia AC, Galarini R, Taticchi MI, Dorr AJM, Mantilacci L (2003) Antioxidant responses and bioaccumulation in Ictalurus melas under mercury exposure. Ecotoxicol Environ Saf 55(2):162–167

    Article  CAS  Google Scholar 

  • Farooq MA, Saqib ZA, Akhtar J, Bakhat JF, Pasala RK, Dietz KJ (2016) Protective role of silicon (Si) against combined stress of salinity and boron (B) toxicity by improving antioxidant enzymes activity in rice. Silicon. https://doi.org/10.1007/s12633-015-9346-z

    Article  Google Scholar 

  • Foyer CH, Noctor G (2005) Oxidant and antioxidant signaling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ 28(8):1056–1071

    Article  CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48(12):909–930

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Fujita M (2013) Exogenous sodium nitroprusside alleviates arsenic-induced oxidative stress in wheat (Triticum aestivum L.) seedlings by enhancing antioxidant defense and glyoxalase system. Ecotoxicology 22(3):584–596

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Hossain MA, Teixeira da Silva JA, Fujita M (2012) Plant response and tolerance to abiotic oxidative stress: antioxidant defense is a key factor. In: Venkateshwarulu B, Shanker AK, Shanker C, Mandapaka M (eds) Crop stress and its management: perspectives and strategies. Springer, Berlin, pp 261–316

    Chapter  Google Scholar 

  • Hasanuzzaman M, Nahar K, Fujita M (2013) Plant response to salt stress and role of exogenous protectants to mitigate salt-induced damages. In: Ahmad P, Azooz MM, Prasad MNV (eds) Ecophysiology and responses of plants under salt stress. Springer, New York, pp 25–87

    Chapter  Google Scholar 

  • Hasanuzzaman M, Alam MM, Rahman A, Hasanuzzaman M, Nahar K, Fujita M (2014a) Exogenous proline and glycine betaine mediated upregulation of antioxidant defense and glyoxalase systems provides better protection against salt-induced oxidative stress in two rice (Oryza sativa L.) varieties. Biomed Res Int. https://doi.org/10.1155/2014/757219

    Article  PubMed  PubMed Central  Google Scholar 

  • Hasanuzzaman M, Nahar K, Fujita M (2014b) Silicon and selenium: two vital trace elements that confer abiotic stress tolerance to plants. In: Ahmed P, Rasool S (eds) Emerging technologies and management of crop stress tolerance. Academic Press, New York, pp 377–422

    Chapter  Google Scholar 

  • Hasanuzzaman M, Nahar K, Hossain MS, Mahmud JA, Rahman A, Inafuku M, Oku H, Fujita M (2017a) Coordinated actions of glyoxalase and antioxidant defense systems in conferring abiotic stress tolerance in plants. Int J Mol Sci 18(1):200

    Article  Google Scholar 

  • Hasanuzzaman M, Nahar K, Anee TI, Fujita M (2017b) Glutathione in plants: biosynthesis and physiological role in environmental stress tolerance. Physiol Mol Biol Plants 23(2):249–268

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Nahar K, Anee TI, Fujita M (2017c) Exogenous silicon attenuates cadmium-induced oxidative stress in Brassica napus L. by modulating AsA-GSH pathway and glyoxalase system. Front Plant Sci 8:1061

    Article  Google Scholar 

  • Hashemi A, Abdolzadeh A, Sadeghipour HR (2010) Beneficial effects of silicon nutrition in alleviating salinity stress in hydroponically grown canola, Brassica napus L. plants. Soil Sci Plant Nutr 56(2):244–253

    Article  CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photo peroxidation in isolated chloroplast: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125(1):189–198

    Article  CAS  Google Scholar 

  • Hossain MA, Nakano Y, Asada K (1984) Monodehydroascorbate reductase in spinach chloroplasts and its participation in the regeneration of ascorbate for scavenging hydrogen peroxide. Plant Cell Physiol 25(3):385–395

    CAS  Google Scholar 

  • Hossain MA, Hossain MZ, Fujita M (2009) Stress-induced changes of methylglyoxal level and glyoxalase I activity in pumpkin seedlings and cDNA cloning of glyoxalase I gene. Aust J Crop Sci 3(2):53–64

    CAS  Google Scholar 

  • Huang C, He W, Guo J, Chang X, Su P, Zhang L (2005) Increased sensitivity to salt stress in ascorbate-deficient Arabidopsis mutant. J Exp Bot 56(422):3041–3049

    Article  CAS  Google Scholar 

  • Hussain M, Park HW, Farooq M, Jabran K, Lee DJ (2013) Morphological and physiological basis of salt resistance in different rice genotypes. Int J Agric Biol 15:113–118

    Google Scholar 

  • Jiao-jing L, Shao-hang L, Pei-lei X, Xiu-juan W, Ji-gang B (2009) Effects of exogenous silicon on the activities of antioxidant enzymes and lipid peroxidation in chilling-stressed cucumber leaves. Agric Sci China 8:1075–1086

    Article  Google Scholar 

  • Kafi M, Nabati J, Zare Mehrjerdi M (2011) Effect of salinity and silicon application on oxidative damage of sorghum [Sorghum bicolor (L.) Moench]. Pak J Bot 43(5):2457–2462

    CAS  Google Scholar 

  • Khoshgoftarmanesh AH, Khodarahmi S, Haghighi M (2014) Effect of silicon nutrition on lipid peroxidation and antioxidant response of cucumber plants exposed to salinity stress. Arch Agron Soil Sci 60(5):639–653

    Article  CAS  Google Scholar 

  • Kim Y‑H, Khan AL, Waqas M, Lee I‑J (2017) Silicon regulates antioxidant activities of crop plants under abiotic-induced oxidative stress: a review. Front Plant Sci 8:510

    PubMed  PubMed Central  Google Scholar 

  • Mahmood S, Daur I, Al-Solaimani SG, Ahmad S, Madkour MH, Yasir M, Hirt H, Ali S, Ali Z (2016) Plant growth promoting rhizobacteria and silicon synergistically enhance salinity tolerance of mung bean. Front Plant Sci 7:876

    PubMed  PubMed Central  Google Scholar 

  • Mahmud JA, Hasanuzzaman M, Nahar K, Rahman A, Hossain MS, Fujita M (2017) γ‑aminobutyric acid (GABA) confers chromium stress tolerance in Brassica juncea L. by modulating the antioxidant defense and glyoxalase systems. Ecotoxicology 26(5):675–690

    Article  Google Scholar 

  • Manivannan A, Soundararajan P, Muneer S, Ko CH, Jeong BR (2016) Silicon mitigates salinity stress by regulating the physiology, antioxidant enzyme activities, and protein expression in Capsicum annuum ‘Bugwang. Biomed Res Int. https://doi.org/10.1155/2016/3076357

    Article  PubMed  PubMed Central  Google Scholar 

  • Milne CJ, Laubscher CP, Ndakidemi PA, Marnewick JL, Rautenbach F (2012) Salinity induced changes in oxidative stress and antioxidant status as affected by applications of silicon in lettuce (Lactuca sativa). Int J Agric Biol 14(5):763–768

    CAS  Google Scholar 

  • Nahar K, Hasanuzzaman M, Alam MM, Fujita M (2015) Roles of exogenous glutathione in antioxidant defense system and methylglyoxal detoxification during salt stress in mung bean. Biol Plant 59(4):745–756

    Article  CAS  Google Scholar 

  • Nahar K, Hasanuzzaman M, Rahman A, Alam MM, Mahmud JA, Suzuki T, Fujita M (2016) Polyamines confer salt tolerance in mung bean (Vigna radiata L.) by reducing sodium uptake, improving nutrient homeostasis, antioxidant defense, and methylglyoxal detoxification systems. Front Plant Sci 7:1104

    Article  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22(5):867–880

    CAS  Google Scholar 

  • Paradiso A, Berardino R, de Pinto M, di Toppi LS, Storelli FT, de Gara L (2008) Increase in ascorbate–glutathione metabolism as local and precocious systemic responses induced by cadmium in durum wheat plants. Plant Cell Physiol 49(3):362–374

    Article  CAS  Google Scholar 

  • Rahman A, Nahar K, Hasanuzzaman M, Fujita M (2016) Calcium supplementation improves Na+/K+ ratio, antioxidant defense and glyoxalase systems in salt-stressed rice seedlings. Front Plant Sci 7:609

    PubMed  PubMed Central  Google Scholar 

  • Shahzad M, Qadir A, Masood S (2017) Silicon and alleviation of salt stress in crop genotypes differing in salt tolerance. In: Tripathi DK, Singh VP, Ahmad P, Chauhan DK, Prasad SM (eds) Silicon in plants: advances and future prospects. CRC, Boca Raton, pp 133–148

    Google Scholar 

  • Shugaev AG, Lashtabega DA, Shugaeva NA, Vyskrebentseva EI (2011) Activities of antioxidant enzymes in mitochondria of growing and dormant sugar beet roots. Russ J Plant Physiol 58(3):387–393

    Article  CAS  Google Scholar 

  • Su Y, Guo J, Ling H, Chen S, Wang S, Xu L, Allan AC, Que Y (2014) Isolation of a novel peroxisomal catalase gene from sugarcane, which is responsive to biotic and abiotic stresses. PLoS ONE. https://doi.org/10.1371/journal.pone.0084426

    Article  PubMed  PubMed Central  Google Scholar 

  • Torabi F, Majd A, Enteshari S (2015) The effect of silicon on alleviation of salt stress in borage (Borago officinalis L.). Soil Sci Plant Nutr 61(5):788–798

    Article  CAS  Google Scholar 

  • Yadav SK, Singla-Pareek SL, Ray M, Reddy MK, Sopory SK (2005) Methylglyoxal levels in plants under salinity stress are dependent on glyoxalase I and glutathione. Biochem Biophys Res Commun 337(1):61–67

    Article  CAS  Google Scholar 

  • Yadav SK, Singla-Pareek SL, Ray M, Reddy MK, Sopory SK (2008) An overview on the role of methylglyoxal and glyoxalases in plants. Drug Metabol Drug Interact 23(1–2):51–68

    CAS  PubMed  Google Scholar 

  • Yu CW, Murphy TM, Lin CH (2003) Hydrogen peroxide-induces chilling tolerance in mung beans mediated through ABA-independent glutathione accumulation. Funct Plant Biol 30:955–963

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge Ms. Khursheda Parvin, Assistant Professor, Department of Horticulture, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh for the critical reading and editing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirza Hasanuzzaman.

Ethics declarations

Conflict of interest

M. Hasanuzzaman, K. Nahar, M.M. Rohman, T.I. Anee, Y. Huang and M. Fujita declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasanuzzaman, M., Nahar, K., Rohman, M.M. et al. Exogenous Silicon Protects Brassica napus Plants from Salinity-Induced Oxidative Stress Through the Modulation of AsA-GSH Pathway, Thiol-Dependent Antioxidant Enzymes and Glyoxalase Systems. Gesunde Pflanzen 70, 185–194 (2018). https://doi.org/10.1007/s10343-018-0430-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10343-018-0430-3

Keywords

Schlüsselwörter

Navigation