Gesunde Pflanzen

, Volume 70, Issue 2, pp 91–98 | Cite as

Growth of Mixoploid GIBBERELLIC ACID 20 OXIDASE (GA20-OXIDASE) Overexpressing Transgenic Populus

Original Article
  • 20 Downloads

Abstract

Biomass production is traditionally an important goal in forest tree breeding programs. However, progress in classical tree breeding is limited because of long generation cycles of many forest tree species. Due to this limitation, genetic engineering, and also the quite recently developed genome editing technique, are very attractive tools to improve tree characteristics in a relatively short time. As a proof-of-concept approach, the GIBBERELLIC ACID 20 OXIDASE (GA20-OXIDASE) gene was constitutively overexpressed in poplar leading to significantly higher plants. Unfortunately, deleterious side-effects were also observed, like longer and thinner shoots leading to plants with unstable stems unable to grow without external stabilization. In the literature, polyploidization was reported to increase stem thickness relatively to plant height in several plant species. Therefore, polyploidization of GA20-OXIDASE overexpressing transgenic poplar lines was attempted. Mixoploid (ploidy chimeric: diploid and tetraploid nuclei) plants were obtained and assessed for several years for ploidy status and growth performance (stem height and diameter, bud set) in climate chamber and glasshouse. The results indicate that mixoploid GA20-OXIDASE overexpressing transgenic poplar still reveal increased growth but also showed a lower height-to-stem ratio compared to the diploid GA20-OXIDASE transgenic poplar, enabling the mixoploid transgenic plants to grow without external stabilization.

Keywords

Transformation Flow cytometry Poplar breeding Gibberellic acid Oryzalin Polyploidization 

Wachstum von mixoploiden GIBBERELLINSÄURE 20 OXIDASE (GA20-OXIDASE) überexprimierenden transgenen Pappeln

Zusammenfassung

Die Biomasseproduktion ist traditionell ein wichtiges Ziel in der Forstpflanzenzüchtung. Die Fortschritte in der klassischen Forstpflanzenzüchtung sind jedoch wegen der langen Generationszyklen vieler Waldbaumarten begrenzt. Aufgrund dieser Einschränkung stellen die klassische Gentechnik sowie auch die vor kurzem entwickelte Genom-Editierung-Technik sehr attraktive Werkzeuge dar, um Eigenschaften von langlebigen Bäumen in relativ kurzer Zeit zu verbessern. Als „Proof-of-Concept“-Ansatz wurde das GIBBERELLINSÄURE 20 OXIDASE (GA20-OXIDASE) Gen in der Pappel konstitutiv überexprimiert, was zu signifikant höheren Pflanzen führte. Leider wurden auch unliebsame Nebeneffekte beobachtet, wie längere und dünnere Triebe, die zu Pflanzen mit instabilen Stämmen führen, die ohne externe Stabilisierung nicht wachsen können. In der Literatur wurde berichtet, dass die Polyploidisierung bei verschiedenen Pflanzenarten die Stammdicke relativ zur Pflanzenhöhe erhöht. Daher wurde eine Polyploidisierung von GA20-OXIDASE-überexprimierenden transgenen Pappellinien versucht. Mixoploide (ploidische Chimäre: diploide und tetraploide Kerne) Pflanzen wurden erhalten und über mehrere Jahre auf Ploidiestatus und Wachstumsleistung (Stammhöhe und -durchmesser, Knospensatz) in der Klimakammer und im Gewächshaus untersucht. Die Ergebnisse zeigen, dass die mixoploiden GA20-OXIDASE-überexprimierenden transgenen Pappeln immer noch ein erhöhtes Wachstum aufweisen, aber auch im Vergleich zu diploiden GA20-OXIDASE-transgenen Pappeln ein geringeres Verhältnis von Höhe zu Stängel zeigen, wodurch die mixoploiden transgenen Pflanzen ohne externe Stabilisierung wachsen können.

Schlüsselwörter

Transformation Durchflusszytometrie Pappelzüchtung Gibberelinsäure Oryzalin Polyploidisierung 

Notes

Acknowledgements

Thanks are due to Maria E. Eriksson (University Umeå, Sweden) for providing the 35S::GA20-OXIDASE construct. I thank A. Schellhorn and Olaf Polak for excellent technical assistance in the lab, and the glasshouse staff (M. Hunger, G. Wiemann, R. Ebbinghaus, M. Spauszus) for plant cultivation. I also thank anonymous reviewers for their valuable comments.

Conflict of interest

M. Fladung declares that he has no competing interests.

References

  1. Ahuja MR (1986) Aspen. In Evans DA, Sharp WR, Ammirato PJ (eds). Handbook of Plant Cell Culture 4, Techniques and Applications, Macmillan Publishing Company, New York, pp 626–651Google Scholar
  2. Campbell MM, Brunner AM, Jones HM, Strauss SH (2003) Forestry’s f0ertile crescent: the application of biotechnology to forest trees. Plant Biotechnol J 1:141–154CrossRefPubMedGoogle Scholar
  3. Chae WB, Hong SJ, Gifford JM, Rayburn AL, Widholm JM, Juvik JA (2013) Synthetic polyploid production of Miscanthus sacchriflorus, Miscanthus sinensis and Miscanthus x giganteus. GCB Bioenergy 5:338–350CrossRefGoogle Scholar
  4. Dinus RJ, Payne P, Sewell NM, Chiang VL, Tuskan GA (2001) Genetic modification of short rotation popular wood: properties for ethanol fuel and fiber productions. CRC Crit Rev Plant Sci 20:51–69CrossRefGoogle Scholar
  5. Doblin MS, Kurek I, Jacob-Wilk D, Delmer DP (2002) Cellulose biosynthesis in plants: from genes to rosettes. Plant Cell Physiol 43:1407–1420CrossRefPubMedGoogle Scholar
  6. Dünisch O, Funada R, Nakaba S, Fladung M (2006) Influence of overexpression of a gibberellin 20-oxidase gene on the kinetics of xylem cell development in hybrid poplar (Populus tremula L. x P. tremuloides Michx.). Holzforschung 60:608–617CrossRefGoogle Scholar
  7. Edmunds CW, Peralta P, Kelley SS, Chiang VL, Sharma-Shivappa RR et al (2017) Characterization and enzymatic hydrolysis of wood from transgenic Pinus taeda engineered with syringyl lignin or reduced lignin content. Cellulose 24:1901–1914CrossRefGoogle Scholar
  8. Eriksson ME, Israelsson M, Olsson O, Moritz T (2000) Increased gibberellin biosynthesis in transgenic trees promotes growth, biomass production and xylem fiber length. Nat Biotechnol 18:784–788CrossRefPubMedGoogle Scholar
  9. Ewald D, Ulrich K, Naujoks G, Schröder MB (2009) Induction of tetraploid poplar and black locust plants using colchicine: chloroplast number as an early marker for selecting polyploids in vitro. Plant Cell Tissue Organ Cult 99:353–357CrossRefGoogle Scholar
  10. Flachowsky H, Hanke MV, Peil A, Strauss SH, Fladung M (2009) A review on transgenic approaches to accelerate breeding of woody plants. Plant Breed 128:217–226CrossRefGoogle Scholar
  11. Fladung M (2006) Modification of cellulose. In: Fladung M, Ewald D (eds) Tree transgenesis—recent developments. Springer, Berlin, Heidelberg, New York, pp 123–136CrossRefGoogle Scholar
  12. Fladung M (2013) Efficient in vitro plantlet regeneration in Populus euphratica Oliver. Afr J Biotechnol 12:826–832Google Scholar
  13. Fladung M (2016) Neue Methoden der Pflanzenzüchtung: Biotechnologie 3.0. AFZ-DerWald 23/2016:48–52Google Scholar
  14. Fladung M, Muhs HJ, Ahuja MR (1996) Morphological changes observed in transgenic Populus carrying the rolC gene from Agrobacterium rhizogenes. Silvae Genet 45:349–354Google Scholar
  15. Fladung M, Großmann K, Ahuja MR (1997) Alterations in hormonal and developmental characteristics in transgenic Populus conditioned by the rolC gene from Agrobacterium rhizogenes. J Plant Physiol 150:420–427CrossRefGoogle Scholar
  16. Fladung M, Hoenicka H, Ahuja MR (2013) Genomic stability and long-term transgene expression in poplar. Transgenic Res 22:1167–1178CrossRefPubMedGoogle Scholar
  17. Fleet CM, Sun T (2005) A DELLAcate balance: the role of gibberellin in plant morphogenesis. Curr Opin Plant Biol 8:77–85CrossRefPubMedGoogle Scholar
  18. Hedden P (1999) Recent advances in gibberellin biosynthesis. J Exp Bot 50:553–563Google Scholar
  19. Hoenicka H, Fladung M (2006) Faster evaluation of sterility strategies in transgenic early flowering poplar. Silvae Genet 55:285–291Google Scholar
  20. Israelsson M, Mellerowicz E, Chono M, Gullberg J, Moritz T (2004) Cloning and overproduction of gibberellin 3‑oxidase in hybrid aspen trees. Effects of gibberellin homeostasis and development. Plant Physiol 135:221–230CrossRefPubMedPubMedCentralGoogle Scholar
  21. Jeon HW, Cho JS, Park EJ, Han KH, Choi YI, Ko JH (2016) Developing xylem-preferential expression of PdGA20ox1, a gibberellin 20-oxidase 1 from Pinus densiflora, improves woody biomass production in a hybrid poplar. Plant Biotechnol J 14:1161–1170CrossRefPubMedGoogle Scholar
  22. Joshi CP (2004) Molecular genetics of cellulose biosynthesis in trees. In: Kumar S, Fladung M (eds) Molecular genetics and breeding of forest trees. Haworth Press, Binghamton, pp 141–165Google Scholar
  23. Joshi CP, Bhandari S, Ranjan P, Kalluri UC, Liang X, Fujino T, Samuga A (2004) Genomics of cellulose biosynthesis in poplars. New Phytol 164:53–61CrossRefGoogle Scholar
  24. Li L, Zhou Y, Cheng X, Sun J, Marita JM, Ralph J, Chiang VL (2003) Combinatorial modification of multiple lignin traits in trees through multigene cotransformation. Proc Natl Acad Sci USA 15:4939–4944CrossRefGoogle Scholar
  25. Li X, Weng JK, Chapple C (2008) Improvement of biomass through lignin modification. Plant J 54:569–581CrossRefPubMedGoogle Scholar
  26. Lloyd G, McCown BH (1980) Commercially feasible micropropagation of mountain laurel (Kalmia latiflora) by use of shoot tip culture. Comb Proc Int Plant Propag Soc 30:421–427Google Scholar
  27. Maherali H, Walden AE, Husbund BC (2009) Genome duplication and the evolution of physical responses to water stress. New Phytol 184:721–731CrossRefPubMedGoogle Scholar
  28. Nevell TP, Zeronian SH (eds) (1985) Cellulose chemistry and its applications. Ellis Horwood Ltd, United KingdomGoogle Scholar
  29. Olszewski N, Sun T, Gubler F (2002) Gibberellin signalling biosynthesis, catabolism, and response pathways. Plant Cell 14(Suppl):S61–S80CrossRefPubMedPubMedCentralGoogle Scholar
  30. Pilate G, Guiney E, Holt K, Petit-Conil M, Lapierre C et al (2002) Field and pulping performances of transgenic trees with altered lignification. Nat Biotechnol 20:607–612CrossRefPubMedGoogle Scholar
  31. Ralph J, MacKay JJ, Hatfield RD, OMalley DM, Whetten RW, Sederoff RR (1997) Abnormal lignin in a loblolly pine mutant. Science 277:235–239CrossRefPubMedGoogle Scholar
  32. Sattler M, Carvalho C, Clarindo W (2016) The polyploidy and its key role in plant breeding. Planta 243:281–296CrossRefPubMedGoogle Scholar
  33. Shi H, Yu W, Tsang E, Chow CF (2014) Induction of polyploids hairy roots and its plant regeneration in Pogostemon cablin. Chin J Biotechnol 30:1235–1246Google Scholar
  34. Somerville C (2006) Cellulose Synthesis in Higher Plants. Annual Review of Cell and Developmental Biology 22 (1):53–78CrossRefPubMedGoogle Scholar
  35. Strauss SH, DiFazio SP, Meilan R (2001) Genetically modified poplars in context. For Chron 77:271–279CrossRefGoogle Scholar
  36. Sun T, Gubler F (2004) Molecular mechanism of gibberellin signalling in plants. Annu Rev Plant Biol 55:197–223CrossRefPubMedGoogle Scholar
  37. Taylor G (2002) Populus: Arabidopsis for forestry. Do we need a model tree? Ann Bot 90:681–689CrossRefPubMedPubMedCentralGoogle Scholar
  38. Wang Y, Zhao J, Lu W, Deng D (2017) Gibberellin in plant height control: old player, new story. Plant Cell Rep 36:391–398CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Thuenen-Institute of Forest Genetics (TI-FG)GrosshansdorfGermany

Personalised recommendations