Advertisement

European Journal of Forest Research

, Volume 138, Issue 4, pp 623–637 | Cite as

Biomass estimation of individual trees for coppice-originated oak forests

  • Emrah OzdemirEmail author
  • Ender Makineci
  • Ersel Yilmaz
  • Meric Kumbasli
  • Servet Caliskan
  • Vedat Beskardes
  • Akif Keten
  • Hayati Zengin
  • Hatice Yilmaz
Original Paper
  • 142 Downloads

Abstract

In this study, individual tree-biomass equations are developed for the different biomass components (foliage, branch, bark, stem, and total aboveground biomass) of Quercus frainetto Ten., Quercus cerris L., and Quercus petraea (Matt.) Liebl. species, which are the main oak species in coppice-originated oak forests. This research was conducted in northern Turkish Thrace, an important coppice-oak area. A total of 474 oak trees at different development stages over different sites were destructively sampled to obtain biomass models of the major oak species in the region. Two main biomass models are established to estimate the biomass components: according to the diameter at breast height (DBH) alone and according to the d2h variable, which is the combined DBH and tree height. The goodness-of-fit statistics of the models are calculated to compare these models. The models that use the DBH alone as an independent variable explain 68–95% of the variation in the biomass of the tree components. After adding the tree height to the model, the accuracy for the bark-, stem-, and total aboveground-biomass estimates increased, while the accuracy of the foliage- and branch-biomass estimates decreased. Different oak species have different biomass components depending on their development stages. The amount of biomass components in the total aboveground biomass and foliage decreased from 20% (SDF) to 4% (LDF), the amount of bark decreased from 17% (SDF) to 12% (LDF), and the amount of stems increased from 42% (SDF) to 66% (LDF) when increasing the mean DBH of the sample plots.

Keywords

Allometric relations Diameter dependence Biomass components DBH Quercus cerris Quercus frainetto Quercus petraea 

Notes

Acknowledgements

The present study was financed by TUBITAK Project Number TOVAG-107O750. This work was supported by Istanbul University Research Projects Coordination Unit Project Number BEK-2016-21771. The authors thank two anonymous reviewers and editor for valuable comments and recommendations which significantly improved the original manuscript.

References

  1. Atay İ (1987) Doğal gençleştirme yöntemleri I-II [Natural regeneration methods I-II]. İstanbul Üniversitesi Fen Bilimleri Enstitüsü Yayını, Gür-Ay Matbaası, İstanbul (in Turkish) Google Scholar
  2. Aylak Özdemir G (2013) Trakya meşe ormanlarında artım ve büyüme ilişkileri [The relation of growth and increment in Thrace oak forests]. PhD thesis, İstanbul Üniversitesi Fen Bilimleri Enstitüsü, İstanbul (in Turkish)Google Scholar
  3. Bi H, Turner J, Lambert MJ (2004) Additive biomass equations for native eucalypt forest trees of temperate Australia. Trees 18:467–479.  https://doi.org/10.1007/s00468-004-0333-z CrossRefGoogle Scholar
  4. Carvalho JP, Parresol BR (2003) Additivity in tree biomass components of Pyrenean oak (Quercus pyrenaica Willd.). For Ecol Manag 179:269–276.  https://doi.org/10.1016/S0378-1127(02)00549-2 CrossRefGoogle Scholar
  5. Cienciala E, Apltauer J, Exnerová Z, Tatarinov F (2008) Biomass functions applicable to oak trees grown in Central-European forestry. J For Sci 54(3):109–120CrossRefGoogle Scholar
  6. Durkaya B (1998) Zonguldak Orman Bölge Müdürlüğü meşe meşcerelerinin biyokütle tablolarının düzenlenmesi [Regulation of biomass tables of Zonguldak Forest Regional Directorate oak stands]. Master thesis, Zonguldak Karaelmas Üniversitesi, Fen Bilimleri Enstitüsü, Zonguldak (in Turkish)Google Scholar
  7. González-García M, Hevia A, Majada J, Barrio-Anta M (2013) Above-ground biomass estimation at tree and stand level for short rotation plantations of Eucalyptus nitens (Deane & Maiden) Maiden in Northwest Spain. Biomass Bioenergy 54:147–157.  https://doi.org/10.1016/j.biombioe.2013.03.019 CrossRefGoogle Scholar
  8. Hochbichler E (2008) Fallstudien zur Struktur, Produktion und Bewirtschaftung von Mittelwäldern im Osten Österreichs (Weinviertel) [Case studies on structure, production and management of coppice with standards in the eastern part of Austria (Weinviertel)]. Österreichische Gesellschaft für Waldökosystemforschung und Experimentelle Baumforschung, WienGoogle Scholar
  9. Hochbichler E, Spinka S, Glatzel G, Bruckman V, Grieshofer H (2009) Untersuchungen zur Dynamik der Biomassenund Kohlenstoffvorräte in Niederwäldern mit Überhälter, Mittel- und Hochwäldern [Investigations to the dynamic of the biomass and carbon pools in coppice with reserves stands, coppice with standards stands and high forest stands]. Bundesministerium für Land- und Forstwirtschaft, Umwelt- und Wasserwirtschaft. Universität für Bodenkunde (BOKU), Wien, p 1–168Google Scholar
  10. Husmann K, Rumpf S, Nagel J (2018) Biomass functions and nutrient contents of European beech, oak, sycamore maple and ash and their meaning for the biomass supply chain. J Clean Prod 172:4044–4056.  https://doi.org/10.1016/j.jclepro.2017.03.019 CrossRefGoogle Scholar
  11. Irmak A, Kurter A, Kantarcı MD (1980) Trakya’nın orman yetişme ortamı bölgelerinin sınıflandırılması [Classificiation of forests sites of Thrace]. İstanbul Üniversitesi Yayın No:2636, Orman Fakültesi Yayın No: 276, Matbaa Teknisyenleri Basımevi, İstanbul (in Turkish)Google Scholar
  12. Kumbaşlı M, Makineci E, Keten A, Beşkardeş V, Özdemir E (2017) Effects of parent material, stand type and oak species on defoliation of coppice-originated oak (Quercus spp.) forests in Northern Turkish Thrace. Bosque 38(2):299–306.  https://doi.org/10.4067/S0717-92002017000200007 CrossRefGoogle Scholar
  13. Lambert MC, Ung CH, Raulier F (2005) Canadian national tree aboveground biomass equations. Can J For Res 35(8):1996–2018.  https://doi.org/10.1139/x05-112 CrossRefGoogle Scholar
  14. Litton CM, Kauffman JB (2008) Allometric models for predicting aboveground biomass in two widespread woody plants in Hawaii. Biotropica 40(3):313–320.  https://doi.org/10.1111/j.1744-7429.2007.00383.x CrossRefGoogle Scholar
  15. Makineci E (2005) Trakya’da meşe ormanlarının tür zenginliği, koruya dönüştürülmesi ve önemi [species richness of oak forests in Thrace, to conversion the coppice forests into high forests and importance]. Trakya’da Sanayileşme ve Çevre Sempozyumu IV, Bildiriler Kitabı 14–15 Ekim 2005, Edirne, Turkey, pp 381–389 (in Turkish)Google Scholar
  16. Makineci E, Yılmaz E, Kumbaşlı M, Yılmaz H, Çalışkan S, Sevgi O, Keten A, Zengin H, Beşkardeş V, Özdemir E (2011). Kuzey Trakya koruya tahvil meşe ekosistemlerinde sağlık durumu, biyokütle, karbon depolama ve faunistik özelliklerin belirlenmesi [Determination of health condition, biomass, carbon sequestration and faunistic characteristics on conversion of coppice oak ecosystems in Northern Thrace]. TUBITAK Project, TUBITAK-TOVAG 107O750, Turkey (in Turkish)Google Scholar
  17. Makineci E, Ozdemir E, Calıskan S, Yilmaz E, Kumbasli M, Keten A, Beskardes V, Zengin H, Yilmaz H (2015) Ecosystem carbon pools of coppice-originated oak forests at different development stages. Eur J Forest Res 134(2):319–333.  https://doi.org/10.1007/s10342-014-0854-y CrossRefGoogle Scholar
  18. Návar J (2009) Allometric equations for tree species and carbon stocks for forests of northwestern Mexico. For Ecol Manag 257:427–434.  https://doi.org/10.1016/j.foreco.2008.09.028 CrossRefGoogle Scholar
  19. OGM (2006a) Baltalık ormanların koruya dönüştürülmesi eylem planı (2006–2015) [action plan to conversion the coppice forests into high forests (2006–2015)]. Çevre ve Orman Bakanlığı, Orman Genel Müdürlüğü, Ankara (in Turkish) Google Scholar
  20. OGM (2006b) Meşe ormanlarının rehabilitasyonu eylem planı (2006-2015) [Action plan for rehabilitation of oak forests]. T.C. Çevre ve Orman Bakanlığı, Orman Genel MüdürlüğüÇevre ve Orman Bakanlığı, Orman Genel Müdürlüğü, Ankara (in Turkish) Google Scholar
  21. OGM (2015) Türkiye orman varlığı [Abundance of forest in turkey]. Orman Genel Müdürlüğü Yayını, Ankara (in Turkish) Google Scholar
  22. Pehlivan S (2017) Durusu kumul ağaçlandırmasında ağaç kütlesinde depolanan karbon miktarının farklı modeller ile tahmini [estimation of the amount of carbon stored in the tree biomass of Durusu sand plantation by different models]. Doktora tezi [PhD thesis], İstanbul Üniversitesi Fen Bilimleri Enstitüsü, İstanbul (in Turkish)Google Scholar
  23. R Core Team (2016) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. Accessed 2 Apr 2019
  24. Smith RJ (1993) Logarithmic transformation bias in allometry. Am J Phys Anthropol 90:215–228CrossRefGoogle Scholar
  25. Smith DM, Larson BC, Kelty MJ, Ashton PMS (1997) The practice of silviculture: applied forest ecology, 9th edn. Wiley, HobokenGoogle Scholar
  26. Suchomel C, Pyttel P, Becker G, Bauhus J (2012) Biomass equations for sessile oak (Quercus petraea (Matt.) Liebl.) and hornbeam (Carpinus betulus L.) in aged coppiced forests in southwest Germany. Biomass Bioenergy 46:722–730.  https://doi.org/10.1016/j.biombioe.2012.06.021 CrossRefGoogle Scholar
  27. Ter-Mikaelian MT, Parker WC (2000) Estimating biomass of white spruce seedlings with vertical photo imagery. New For 20:145–162.  https://doi.org/10.1023/A:1006716406751 CrossRefGoogle Scholar
  28. Vargas-Larreta B, López-Sánchez CA, Corral-Rivas JJ, López-Martínez JO, Aguirre-Calderón CG, Álvarez-González JG (2017) Allometric equations for estimating biomass and carbon stocks in the temperate forests of North-Western Mexico. Forests 8(8):269.  https://doi.org/10.3390/f8080269 CrossRefGoogle Scholar
  29. Zhao D, Kane M, Markewitz D, Teskey R, Clutter M (2015) Additive tree biomass equations for midrotation loblolly pine plantations. For Sci 61(4):613–623.  https://doi.org/10.5849/forsci.14-193 CrossRefGoogle Scholar
  30. Zribi L, Chaar H, Khaldi A, Hanchi B, Mouillot F, Gharbi F (2016) Estimate of biomass and carbon pools in disturbed and undisturbed oak forests in Tunisia. For Syst 25(2):e060.  https://doi.org/10.5424/fs/2016252-08062 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Forest Yield and Biometry Department, Faculty of ForestryIstanbul University—CerrahpaşaBahçeköy, SarıyerTurkey
  2. 2.Soil Science and Ecology Department, Faculty of ForestryIstanbul University—CerrahpaşaBahçeköy, SarıyerTurkey
  3. 3.Wildlife Ecology and Management Department, Faculty of Agriculture and Natural SciencesAbant İzzet Baysal UniversityBoluTurkey
  4. 4.Silviculture Department, Faculty of ForestryIstanbul University—CerrahpaşaBahçeköy, SarıyerTurkey
  5. 5.Forest Entomology and Protection Department, Faculty of ForestryIstanbul University—CerrahpaşaBahçeköy, SarıyerTurkey
  6. 6.Wildlife Management Department, Faculty of ForestryDüzce UniversityDüzceTurkey
  7. 7.Forest Management Department, Faculty of ForestryDüzce UniversityDüzceTurkey
  8. 8.Ornamental Plant Cultivation Program, Vocational School of ForestryIstanbul University—CerrahpaşaBahçeköy, SarıyerTurkey

Personalised recommendations