Skip to main content

Advertisement

Log in

Conversion of Norway spruce forests in the face of climate change: a case study in Central Europe

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

Steadily increasing damage to Norway spruce forests in Europe has caused researchers and managers to consider whether these forests can be converted to more stable ecosystems. In a central European mountain region, we investigated whether management systems (MSs) specified by regional stakeholders provide sound alternatives to the currently applied management. We used the forest model Sibyla to explore whether the tested MSs differ in their sensitivity to climate change in terms of altered biomass production, stand structure, forest damage, and financial outcome. The tested MSs were no-management (NM), currently applied management (BAU), and management based on the preferences of forest managers (FM) or on the preferences of other stakeholders (OSH). With NM, spruce remained dominant during the simulation period 2010–2100, and the rate of damage significantly increased. Spruce also remained dominant with FM, while the abundance of non-spruce species significantly increased with BAU and OSH. The rate of salvage logging converged at 50% of the total harvest for all MSs up to 2050. Climate change reduced biomass production (−15%) with all MSs but had a negligible effect on biodiversity indicators. The average initial value of the simulated stands was 20,000 € ha−1 and the nominal value in 2100 was between 1900 and 10,900 € ha−1. The Net Present Value calculated with the 2% interest rate was negative during the whole simulation period (−5600 to −18,500 € ha−1 in 2100). Effect of climate change on all financial indicators was negative. Our findings indicate that secondary spruce forests are highly vulnerable and that the systems proposed by both forest managers and other regional stakeholders failed to significantly reduce forest damage and stabilize forest production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anderegg WRL, Schwalm C, Biondi F, Camarero JJ, Koch G, Litvak M, Ogle K, Shaw JD, Shevliakova E, Williams AP, Wolf A, Ziaco E, Pacala S (2015) Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science 349(6247):528–532

    Article  CAS  PubMed  Google Scholar 

  • Beckley T, Parkins J, Sheppard S (2005) Public participation in sustainable forest management: a reference guide. Sustainable Forest Management Network, Edmonton

    Google Scholar 

  • Berec L, Doležal P, Hais M (2013) Population dynamics of Ips typographus in the Bohemian Forest (Czech Republic): validation of the phenology model PHENIPS and impacts of climate change. For Ecol Manag 292:1–9

    Article  Google Scholar 

  • Borys A, Lasch P, Suckow F, Reyer C, Gutsch M, Hanewinkel M (2015) Economic analysis of carbon sequestration in beech stands in the context of forest management and climate change. Allg Forst Jagdzg 186(3–4):72–84

    Google Scholar 

  • Bošeľa M, Petráš R, Šebeň V, Mecko J, Marušák R (2013) Evaluating competitive interactions between trees in mixed forests in the Western Carpathians: comparison between long-term experiments and SIBYLA simulations. For Ecol Manag 310:577–588

    Article  Google Scholar 

  • Bravo F, LeMay V, Jandl R, Gadow K (2008) Managing forest ecosystems: the challenge of climate change. Springer, New York

    Book  Google Scholar 

  • Briner S, Elkin C, Huber R (2013) Evaluating the relative impact of climate and economic changes on forest and agricultural ecosystem services in mountain regions. J Environ Manag 129:414–422

    Article  Google Scholar 

  • Brunette M, Dragicevic A, Lenglet J, Niedzwiedz A, Badeau V, Dupouey JL (2014) Portfolio management of mixed-species forests, Technical report. Laboratoire d’Economie Forestiere, AgroParisTech-INRA

    Google Scholar 

  • Bugmann H (2014) Forests in a greenhouse atmosphere: predicting the unpredictable? In: Coomes DA, Burslem DFRP, Simonson WD (eds) Forests and global change. Cambridge University Press, Cambridge, pp 359–380

    Chapter  Google Scholar 

  • Bugmann H, Cordonnier T, Truhetz H, Lexer MJ (2017) Impacts of business as usual management on ecosystem services in European mountain ranges under climate change. Reg Environ Change. doi:10.1007/s10113-016-1074-4

    Google Scholar 

  • Buma B, Wessman CA (2013) Forest resilience, climate change, and opportunities for adaptation: a specific case of a general problem. For Ecol Manag 306:216–225

    Article  Google Scholar 

  • Cordonnier T, Berger F, Elkin C, Lämas T, Martinez M (2013) Models and linker functions (indicators) for ecosystem services. Arange Deliverable D2.2. Project Report. FP7-289437-ARANGE

  • Dentener FJ (2006) Global maps of atmospheric nitrogen deposition, 1860, 1993, and 2050. Data set. Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, TN, daac.ornl.gov

  • Díaz S, Fargione J, Chapin FS III, Tilman D (2006) Biodiversity loss threatens human well-being. PLoS Biol 4(8):e277

    Article  PubMed  PubMed Central  Google Scholar 

  • Drever CR, Peterson G, Messier C, Bergeron Y, Flannigan M (2006) Can forest management based on natural disturbances maintain ecological resilience? Can J For Res 36:2285–2299

    Article  Google Scholar 

  • Drobyshev I (2001) Effect of natural disturbances on the abundance of Norway spruce (Picea abies (L.) Karst.) regeneration in nemoral forests of the southern boreal zone. For Ecol Manag 140:151–161

    Article  Google Scholar 

  • Ďurský J (1997) Modellierung der Absterbeprozesse in Rein- und Mischbeständen aus Fichte und Buche. Allg. Forst- und Jagdzeitung, 168. Jg., H. 6/7, pp 131–134

  • Eliasch J (ed) (2008) Climate change: financing global forests. The Stationery Office Limited, Richmond

    Google Scholar 

  • Fabrika M, Ďurský J (2005) Algorithms and software solution of thinning models for SIBYLA growth simulator. J For Sci 51:431–445

    Google Scholar 

  • Fleischer P Jr., Fleischer P Sr., Ferenčík J, Hlaváč P, Kozánek M (2016) Elevated bark temperature in unremoved stumps after disturbances facilitates multi-voltinism in Ips typographus population in a mountainous forest. Lesn Cas For J 62:15–22

    Google Scholar 

  • Gamfeldt L, Snäll T, Bagchi R, Jonsson M, Gustafsson L, Kjellander P, Ruiz-Jaen MC, Fröberg M, Stendahl J, Philipson CD, Mikusiński G, Andersson E, Westerlund B, Andrén H, Moberg F, Moen J, Bengtsson J (2013) Higher levels of multiple ecosystem services are found in forests with more tree species. Nat Commun 4:1340–1347

    Article  PubMed  PubMed Central  Google Scholar 

  • Griess VC, Acevedo R, Härtl F, Staupendahl K, Knoke T (2012) Does mixing tree species enhance stand resistance against natural hazards? A case study for spruce. For Ecol Manag 267:284–296

    Article  Google Scholar 

  • Grodzki W (2010) The decline of Norway spruce Picea abies (L.) Karst. stands in Beskid Ślaski and Zywiecki: Theoretical concept and reality. Beskydy 3(1):19–26

    Google Scholar 

  • Gustafsson L, Baker SC, Bauhus J, Beese WJ, Brodie A, Kouki J, Lindenmayer DB, Lõhmus A, Pastur GM, Messier C, Neyland M, Palik B, Sverdrup-Thygeson A, Volney WJA, Wayne A, Franklin JF (2012) Retention forestry to maintain multifunctional forests: a world perspective. Bioscience 62:633–645

    Article  Google Scholar 

  • Hallegatte S (2009) Strategies to adapt to an uncertain climate change. Glob Environ Change 19:240–247

    Article  Google Scholar 

  • Hanewinkel M, Cullmann DA, Schelhaas MJ, Nabuurs GJ, Zimmermann NE (2012) Climate change may cause severe loss in the economic value of European forest land. Nat Clim Chang 3:203–207

    Article  Google Scholar 

  • Härtl FH, Barka I, Hahn AH, Hlásny T, Irauschek F, Knoke T, Lexer MJ, Griess VC (2016) Multifunctionality in European mountain forests—an optimization under changing climatic conditions. Can J For Res 46(2):163–171

    Article  Google Scholar 

  • Hlásny T, Sitková Z (2010) Spruce forests decline in the Beskids. National Forest Centre—Forest Research Institute Zvolen, Czech University of Life Sciences Prague, Forestry and Game Management Research Institute Jíloviště—Strnady, Zvolen, Slovakia

  • Hlásny T, Turčáni M (2013) Persisting bark beetle outbreak indicates the unsustainability of secondary Norway spruce forests: case study from Central Europe. Ann For Sci 70(5):481–491

    Article  Google Scholar 

  • Hlásny T, Barcza Z, Fabrika M, Balázs B, Churkina G, Pajtík J, Sedmák R, Turčáni M (2011) Climate change impacts on growth and carbon balance of forests in Central Europe. Clim Res 47:219–236

    Article  Google Scholar 

  • Hlásny T, Mátyás C, Seidl R, Kulla L, Merganičová K, Trombik J (2014) Climate change increases the drought risk in Central European forests: What are the options for adaptation? Lesn Cas For J 60:5–18

    Google Scholar 

  • Hlásny T, Barka I, Kulla L, Bucha T, Sedmák R, Trombik J (2015a) Sustainability of forest management in a Central European mountain forest: the role of climate change. Reg Environ Change. doi:10.1007/s10113-015-0894-y

    Google Scholar 

  • Hlásny T, Kočický D, Maretta M, Sitková Z, Barka U, Konôpka M, Hlavatá H (2015b) Effect of deforestation on watershed water balance: hydrological modelling-based approach. Lesn Cas For J 61:89–100

    Google Scholar 

  • Horemans J, Bošela M, Dobor L, Barna M, Bahyl J, Deckmyn G, Fabrika M, Sedmák R, Ceulemans R (2016) Variance decomposition of predictions of stem biomass increment for European beech: contribution of selected sources of uncertainty. For Ecol Manag 361:46–55

    Article  Google Scholar 

  • Jactel H, Branco M, Duncker P, Gardiner B, Grodzki W, Langstrom B, Moreira F, Netherer S, Nicoll B, Orazio C, Piou D, Schelhaas M, Tojic K (2012) A multicriteria risk analysis to evaluate impacts of forest management alternatives on forest health in Europe. Ecol Soc 17(4):52

    Article  Google Scholar 

  • Jönsson AM, Harding S, Bärring L, Ravn HP (2007) Impact of climate change on the population dynamics of Ips typographus in southern Sweden. Agric For Meteorol 146(1–2):70–81

    Article  Google Scholar 

  • Jönsson AM, Schroeder LM, Lagergren F, Anderbrant O, Smith B (2012) Guess the impact of Ips typographus—an ecosystem modelling approach for simulating spruce bark beetle outbreaks. Agric For Meteorol 166–167:188–200

    Article  Google Scholar 

  • Jost L (2006) Entropy and diversity. Oikos 113:363–374

    Article  Google Scholar 

  • Kahn M (1994) Modellierung der Höhenentwicklung ausgewählter Baumarten in Abhängigkeit vom Standort. München, Vol, Forstliche Forschungsber, p 141

    Google Scholar 

  • Kirilenko AP, Segjo RA (2007) Climate change impacts on forestry. Proc Natl Acad Sci USA 104(50):19697–19702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klapwijk MJ, Csóka G, Hirka A, Björkman C (2013) Forest insects and climate change: long-term trends in herbivore damage. Ecol Evol 3(12):4183–4196

    Article  PubMed  PubMed Central  Google Scholar 

  • Klemperer WD (1996) Forest resource economics and finance. McGraw Hill, New York

    Google Scholar 

  • Kunca A, Zúbrik M, Galko J, Rell S (2015) Salvage felling in Slovak forests in the period 2004–2013. Lesn Cas For J 61(3):188–195

    Google Scholar 

  • Lagergren F, Jönsson AM (2010) Climate change and forests’ sensitivity to storm and spruce bark beetle damage. Mistra Swecia, Newsletter 1:10

    Google Scholar 

  • Lakatos F, Molnár M (2009) Mass Mortality of Beech (Fagus sylvatica L.) in South-West Hungary. Acta Silvatica et Lignaria Hungarica 5:75–82

    Google Scholar 

  • Lassauce A, Paillet Y, Jactel H, Bouget C (2011) Deadwood as a surrogate for forest biodiversity: meta-analysis of correlations between deadwood volume and species richness of saproxylic organisms. Ecol Indic 11:1027–1039

    Article  Google Scholar 

  • Lindner M, Garcia-Gonzalo J, Kolström M et al (2008) Impacts of Climate Change on European Forests and Options for Adaptation. Report to the European Commission Directorate-General for Agriculture and Rural Development. http://ec.europa.eu/agriculture/analysis/external/euro_forests/full_report_en.pdf. Accessed 22 Jan 2016

  • Lindner M, Maroschek M, Netherer S, Kremer A, Barbati A, Garcia-Gonzalo J, Seidl R, Delzon S, Corona P, Kolström M, Lexer MJ, Marchetti M (2010) Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For Ecol Manag 259:698–709

    Article  Google Scholar 

  • Lindner M, Fitzgerald JB, Zimmermann NE, Reyer C, Delzon S, van der Maaten E, Hanewinkel M (2014) Climate change and European forests: what do we know, what are the uncertainties, and what are the implications for forest management? J Environ Manag 146(C):69–83

    Article  Google Scholar 

  • Löf M, Bergquist J, Brunet J, Karlsson M, Welander NT (2010) Conversion of Norway spruce stands to broadleaved woodland – regeneration systems, fencing and performance of planted seedlings. Ecol Bull 53:165–173

    Google Scholar 

  • Marzano M, Dandy N, Bayliss HR, Porth E, Potter C (2015) Part of the solution? Stakeholder awareness, information and engagement in tree health issues. Biol Invasions. doi:10.1007/s10530-015-0850-2

    Google Scholar 

  • Matić S, Anić I, Barić D (2010) The Possibility of Converting Spruce Monocultures into Autochthonous Stands in Croatia. In: Klimo E, Hager H, Kulhavý J (ed) Spruce Monocultures in Central Europe – Problems and Prospects. EFI Proceedings No. 33, pp 35–43

  • Merganič J, Fabrika M (2011) Modelling natural regeneration in SIBYLA tree growth simulator. Der Deutsche Verband Forstlicher Forschungsanstalten (DVFFA). Sektion Ertragskunde, Jahrestagung 2011:5–10

    Google Scholar 

  • Mina M, Bugmann H, Klopcic M, Cailleret M (2015) Accurate modelling of harvesting is key for projecting future forest dynamics: a case study in the Slovenian mountains. Reg Environ Change. doi:10.1007/s10113-015-0902-2

    Google Scholar 

  • Morin X, Fahse L, de Mazancourt C, Scherer-Lorenzen M, Bugmann H (2014) Temporal stability in forest productivity increases with tree diversity due to asynchrony in species dynamics. Ecol Lett 17(12):1526–1535

    Article  PubMed  Google Scholar 

  • Müller J, Bußler H, Goßner M, Rettelbach T, Duelli P (2008) The European spruce bark beetle Ips typographus in a national park: from pest to keystone species. Biodivers Conserv 17:2979–3001

    Article  Google Scholar 

  • Nakicenovic N, Swart R (eds) (2000) Special report on emission scenarios. Cambridge University Press, Cambridge

    Google Scholar 

  • Neuner S, Albrecht A, Cullmann D, Engels F, Griess VC, Hahn WA, Hanewinkel M, Härtl F, Kölling C, Staupendahl K, Knoke T (2014) Survival of Norway spruce remains higher in mixed stands under a dryer and warmer climate. Glob Chang Biol 21(2):935–946

    Article  PubMed  Google Scholar 

  • O’Brien L, Marzano M, White RM (2013) Participatory Interdisciplinarity: towards the integration of disciplinary diversity with stakeholder engagement for new models of knowledge production. Sci Public Policy 40(1):51–61

    Article  Google Scholar 

  • Økland B, Berryman A (2004) Resource dynamic plays a key role in regional fluctuations of the spruce bark beetles Ips typographus. Agric For Entomol 6:141–146

    Article  Google Scholar 

  • Pardos M, Perez S, Calama R, Lexer MJ (2016) Ecosystem service provision, management systems and climate change in Valsaín forest, central Spain. Reg Environ Change. doi:10.1007/s10113-016-0985-4

    Google Scholar 

  • Petráš R, Pajtík J (1991) Sústava česko-slovenských objemových tabuliek drevín [System of Czechoslovak volume tables of tree species]. Lesnícky časopis 37:49–56

    Google Scholar 

  • Petráš R, Košút M, Oszlányi J (1985) Listová biomasa stromov smreka, borovice a buka [Foliage biomass of spruce, pine and beech]. Lesnícky časopis 31:121–135

    Google Scholar 

  • Phalen KB (2009) An invitation for public participation in ecological restoration: the reasonable person model. Ecological Restoration 27(2):178–186

    Article  Google Scholar 

  • Pretzsch H, Biber P, Ďurský J (2002) The single tree-based stand simulator SILVA: construction, application and evaluation. For Ecol Manag 162:3–21

    Article  Google Scholar 

  • Puettmann KJ, Wilson SM, Baker SC (2015) Silvicultural alternatives to conventional even-aged forest management—what limits global adoption? For Ecosystems 2:8

    Google Scholar 

  • Ray D, Bathgate S, Moseley D, Taylor P, Nicoll B, Pizzirani S, Gardiner B (2014) Comparing the provision of ecosystem services in plantation forests under alternative climate change adaptation management options in Wales. Reg Environ Change. doi:10.1007/s10113-014-0644-6

    Google Scholar 

  • Roessiger J, Griess VC, Knoke T (2011) May risk aversion lead to near-natural forestry? A simulation study. Forestry 84(5):527–537

    Article  Google Scholar 

  • Roessiger J, Griess VC, Härtl F, Clasen C, Knoke T (2013) How economic performance of a stand increases due to decreased failure risk associated with the admixing of species. Ecol Model 255:58–69

    Article  Google Scholar 

  • Roessiger J, Ficko A, Clasen C, Griess VC, Knoke T (2016) Variability in growth of trees in uneven-aged stands displays the need for optimizing diversified harvest diameters. Eur J Forest Res 135:283–295

    Article  Google Scholar 

  • Rytter L, Johansson K, Karlsson B, Stener LG (2013) Tree species, genetics and regeneration for bioenergy feedstock in Northern Europe. In: Kellomaki S, Kilpeläinen A, Alam A (eds) Forest bioenergy. Production management, carbon sequestration and adaptation. Springer, New York, pp 7–15

    Chapter  Google Scholar 

  • Sarvašová Z, Cienciala E, Beranová Vančo M, Ficko A, Pardos M (2014) Analysis of governance systems applied in multifunctional forest management in selected European mountain regions. Lesn Cas For J 60:159–167

    Google Scholar 

  • Schelhaas MJ, Hengeveld G, Moriondo M, Reinds GJ, Kundzewicz ZW, ter Maat H, Bindi M (2010) Assessing risk and adaptation options to fires and windstorms in European forestry. Mitig Adapt Strateg 15:681–701

    Article  Google Scholar 

  • Schelhaas MJ, Nabuurs GJ, Hengeveld G, Reyer C, Hanewinkel M, Zimmermann NE, Cullmann D (2015) Alternative forest management strategies to account for climate change-induced productivity and species suitability changes in Europe. Reg Environ Change 15(8):1581–1594

    Article  Google Scholar 

  • Sedjo (2010) Adaptation of forests to climate change. Some Estimates, Washington, DC

    Google Scholar 

  • Seidl R, Rammer W (2016) Climate change amplifies the interactions between wind and bark beetle disturbances in forest landscapes. Landscape Ecol. doi:10.1007/s10980-016-0396-4

    Google Scholar 

  • Seidl R, Rammer W, Jäger D, Currie WS, Lexer MJ (2007) Assessing trade-offs between carbon sequestration and timber production within a framework of multi-purpose forestry in Austria. For Ecol Manag 248(1–2):64–79

    Article  Google Scholar 

  • Seidl R, Schelhaas MJ, Rammer W, Verkerk PJ (2014) Increasing forest disturbances in Europe and their impact on carbon storage. Nat Clim Chang 4:806–810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seidl R, Aggestam F, Rammer W, Blennow K, Wolfslehner B (2015) The sensitivity of current and future forest managers to climate-induced changes in ecological processes. Ambio 1–12

  • Seppälä R, Buck A, Katila P (ed) (2009) Adaptation of forests and people to climate change. A Global Assessment Report. IUFRO World Series, vol. 22. Helsinki

  • Shackelford N, Hobbs RJ, Burgar JM, Erickson TE, Fontaine JB, Laliberté Ramalho CE, Perring MP, Standish RJ (2013) Primed for change: developing ecological restoration for the 21st century. Restorn Ecol 21(3):297–304

    Article  Google Scholar 

  • Spiecker H, Hansen J, Klimo E, Skovsgaard JP, Sterba H, von Teuffel K (2004) Norway spruce conversion—options and consequences. Brill, Leiden

    Google Scholar 

  • Staudhammer CL, LeMay VM (2001) Introduction and evaluation of possible indices of stand structural diversity. Can J For Res 31(7):1105–1115

    Article  Google Scholar 

  • Thom D, Seidl R (2015) Natural disturbance impacts on ecosystem services and biodiversity in temperate and boreal forests. Biol Rev. doi:10.1111/brv.12193

    PubMed  PubMed Central  Google Scholar 

  • Thom D, Seidl R, Steyrer G, Krehan H, Formayer H (2013) Slow and fast drivers of the natural disturbance regime in Central European forest ecosystems. For Ecol Manag 307:293–302

    Article  Google Scholar 

  • Thomas FM, Blank R, Hartmann G (2002) Abiotic and biotic factors and their interactions as causes of oak decline in central Europe. For Pathol 32:277–307

    Article  Google Scholar 

  • Ulbrichová I, Remeš J, Zahradník D (2006) Development of the spruce natural regeneration on mountain sites in the Šumava Mts. J For Sci 52(10):446–456

    Google Scholar 

  • van Mantgem PJ, Stephenson NL (2007) Apparent climatically induced increase of tree mortality rates in a temperate forest. Ecol Lett 10(10):909–916

    Article  PubMed  Google Scholar 

  • Wermelinger B (2004) Ecology and management of the spruce bark beetle Ips typographus—a review of recent research. For Ecol Manag 202(1–3):67–82

    Article  Google Scholar 

  • Yousefpour R, Jacobsen JB, Thorsen BJ, Meilby H, Hanewinkel M, Oehler K (2012) A review of decision-making approaches to handle uncertainty and risk in adaptive forest management under climate change. Ann For Sci. 69:1–15

    Article  Google Scholar 

  • Zlatanov T, Elkin CM, Irauschek F, Lexer MJ (2015) Impact of climate change on vulnerability of forests and ecosystem service supply in Western Rhodopes Mountains. Reg Environ Change. doi:10.1007/s10113-015-0869-z

    Google Scholar 

Download references

Acknowledgements

This research was funded by the EC 7FP project ARANGE (FP7-289437-ARANGE), projects supported by the Slovak Research and Development Agency under Contracts Nos. DO7RP-0030-11 and APVV-0111-10, and projects QJ 1220316 and QJ 1220317 supported by the National Agency for Agriculture Research of the Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiří Trombik.

Additional information

Communicated by Manfred J. Lexer.

This article originates from the conference “Mountain Forest Management in a Changing World”, held 7–9 July 2015 in Smokovec, High Tatra Mountains, Slovakia.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1879 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hlásny, T., Barka, I., Roessiger, J. et al. Conversion of Norway spruce forests in the face of climate change: a case study in Central Europe. Eur J Forest Res 136, 1013–1028 (2017). https://doi.org/10.1007/s10342-017-1028-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-017-1028-5

Keywords

Navigation