Skip to main content

Advertisement

Log in

Shrub biomass accumulation and growth rate models to quantify carbon stocks and fluxes for the Mediterranean region

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

The importance of shrub formations in the Mediterranean area both in terms of area occupied and carbon sequestered by them is currently being recognized. However, due to the lack of suitable models to estimate biomass accumulation and growth rate in this region, the carbon sequestered by these formations is not included when computing the total carbon stocks in aboveground biomass in Mediterranean forest ecosystems, according to the IPCC guidelines. The aim of the present study is to develop equations to predict biomass accumulation and growth rate for the main shrub formations in the region of Andalusia (Southern Spain), using the fraction of canopy cover (FCC m ) and the average height of the shrub formations (H m ) as predictors. To build these models, more than 800 plots were inventoried using destructive sampling; the mean value found in the region for biomass accumulation and annual growth rate being 16.73 Mg ha−1 and 1.14 Mg ha−1 year−1, respectively. Heathers and big-size Cistaceae formations were the ones that presented the highest values of biomass accumulation (24.99 and 21.01 Mg ha−1, respectively), while the highest values for annual growth rate were achieved by Leguminous gorse shrubs and, again, big-size Cistaceae bushes (1.49 and 1.64 Mg ha−1 year−1, respectively). The carbon content for the main shrub species and formations in the area was also obtained. The developed models provide the opportunity to estimate shrub carbon stocks in Mediterranean forest management from easy-to-obtain variables, namely FCC m and H m . Moreover, the used shrub formations classifications and model structure allow their applicability to compute biomass accumulation and growth rate at regional and national level using as input data from the Spanish National Forest Inventory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alaback PB (1986) Biomass regression equations for understory plants in coastal Alaska: effects of species and sampling design on estimates. Northwest Sci 60(2):90–103

    Google Scholar 

  • Andersson K, Evans TP, Richards KR (2009) National forest carbon inventories: policy needs and assessment capacity. Clim Change 93(1–2):69–101

    Article  CAS  Google Scholar 

  • Armand D, Etienne M, Legrand C, Marechal J, Valette JC (1993) Phytovolume, phytomasse et relations structurales chez quelques arbustes méditerranéens. Ann Sci For 50:79–89

    Article  Google Scholar 

  • Avendaño D, Acosta M, Carrillo F, Etchevers J (2009) Estimación de biomasa y carbono en un bosque de Abies religiosa. Fitotecnia Mexicana 32(3):233–238

    Google Scholar 

  • Basanta A (1982) Matorral serial en Sierra Morena, Estudio ecológico de las respuestas del matorral a distintas intervenciones humanas en el coto Nacional “La pata del caballo”. Tesis Doctoral, Universidad de Sevilla, Huelva

    Google Scholar 

  • Baskerville GL (1972) Use of logarithmic regression in the estimation of plant biomass. Can J For Res 2:49–53

    Article  Google Scholar 

  • Beedlow PA, Tingey DT, Phillips DL, Hogsett WE, Olszyk DM (2004) Rising atmospheric CO2 and carbon sequestration in forests. Front Ecol Environ 2:315–332

    Google Scholar 

  • Blanco P, Navarro RM (2003) Aboveground phytomass models for main species in shrub ecosystems of western Andalusia. Invest Agrar Sist Recur For 12(3):47–55

    Google Scholar 

  • Bliss CI (1938) The transformation of percentages for use in the analysis of variance. Ohio J Sci 38:9–12

    Google Scholar 

  • Bochet E, Poesen J, Rubio JL (2006) Runoff and soil loss under individual plants of a semi-arid Mediterranean shrubland: influence of plant morphology and rainfall intensity. Earth Surf Process Landf 31:536–549

    Article  Google Scholar 

  • Bravo F, Álvarez-González JG, Río M, Barrio M, Bonet JA, Bravo-Oviedo A, Calama R, Castedo-Dorado F, Crecente-Campo F, Condes S, Diéguez-Aranda U, González-Martínez SC, Lizarralde I, Nanos N, Madrigal A, Martínez-Millán FJ, Montero G, Ordóñez C, Palahi M, Piqué M, Rodriguez F, Rodríguez-Soalleiro R, Rojo A, Ruiz-Peinado R, Sánchez-González M, Trasobares A, Vázquez-Piqué J (2011) Growth and yield models in Spain: historical overview, contemporary examples and perspectives. For Syst 20(2):315–328

    Google Scholar 

  • Brown S (1997) Estimating biomass and biomass change of tropical forests: a primer. FAO Forestry Paper 134. FAO, Rome

  • Brown S (2002) Measuring carbon in forests: current status and future challenges. Environ Pollut 16:363–372

    Article  Google Scholar 

  • Brown S, Sathaye J, Cannell M, Kauppi PE (1996) Mitigation of carbon emissions to the atmosphere by forest management. Commonw For Rev 75(1):80–91

    Google Scholar 

  • Canadell JG, Raupach MR (2008) Managing forests for climate change mitigation. Science 320(5882):1456–1457

    Article  CAS  PubMed  Google Scholar 

  • Castro J, Zamora R, Hódar JA, Gómez JM, Gómez-Aparicio L (2004) Benefits of using shrubs as nurse plants for reforestation in Mediterranean mountains: a 4-year study. Restor Ecol 12:352–358

    Article  Google Scholar 

  • Chapin IFS (1983) Nitrogen and phosphorus nutrition and nutrient cycling by evergreen ans deciduous understory shrubs in an Alaskan black spruce forest. Can J For Res 13:773–781

    Article  CAS  Google Scholar 

  • Chave J, Andalo C, Brown S, Cairns MA, Chambers JQ, Eamus D, Fölster H, Fromard F, Higuchi N, Kira T, Lescure JP, Nelson BW, Ogawa H, Puig H, Riéra B, Yamakura T (2005) Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145(1):78–99

    Article  Google Scholar 

  • Chiarucci A, Wilsson JB, Anderson BJ, De Dominicis V (1999) Cover versus biomass abundance: does it make a difference to the conclusions? J Veg Sci 10:35–42

    Article  Google Scholar 

  • Estornell J, Ruiz LA, Velazquez-Marti B (2011) Study of shrub cover and height using LiDAR data in a Mediterranean area. For Sci 57(3):171–179

    Google Scholar 

  • Eugenio M, Olano JM, Ferrandis P, Martínez-Duro E, Escudero A (2012) Population structure of two dominant gypsophyte shrubs through a secondary plant succession. J Arid Environ 76:30–35

    Article  Google Scholar 

  • Fernandez R, Rodriguez M, Martin A, Garcia JL, Infante JM, Leiva MJ, Rodriguez JJ, Gallardo A (1995) Mediterranean oak forests: basis for appropriate protection strategy, Final Report EV5 V-CT92-0210, CEC, unpub,p 165

  • Figueroa-Navarro L (2001) Comparación de la concentración de carbono en diferentes tipos de vegetación en la sierra norte de Oaxaca. Tesis profesional. Universidad Autónoma de Chapingo, México

    Google Scholar 

  • Flombaum P, Sala OE (2007) A non-destructive and rapid method to estimate biomass and aboveground net primary production in arid steppes. J Arid Environ 69:352–358

    Article  Google Scholar 

  • Fonseca F, de Figueiredo T, Bompastor M (2012) Carbon storage in the Mediterranean upland shrub communities of Montesinho natural park, northeast of Portugal. Agrofor Syst 86:463–475

    Article  Google Scholar 

  • Gayoso J, Guerra J (2005) Contenido de carbono en biomasa aérea de bosque nativo en Chile. Bosque 26(2):33–38

    Article  Google Scholar 

  • Gifford R (2000). Carbon contents of above-ground tissues of forest and woodland trees. Canberra: Australian greenhouse office, National carbon accounting system, Technical Report No 22, p 17

  • Gómez-Aparicio L, Zamora R, Gómez JM, Hódar JA, Castro J, Baraza E (2004) Applying plant facilitation to forest restoration: a meta-analysis of the use of shrubs as nurse plants. Ecol Appl 14:1128–1138

    Article  Google Scholar 

  • Gonzalez M, Augusto L, Gallet-Budynek A, Xue J, Yauschew-Raguenes N, Guyon D, Trichet P, Delerue F, Niollet S, Andreasson F, Achat DL, Bakker MR (2013) Contribution of understory species to total ecosystem aboveground and belowground biomass in temperate Pinus pinaster Ait. forests. For Ecol Manag 289:38–47

    Article  Google Scholar 

  • Gratani L, Varone L, Ricotta C, Catoni R (2013) Mediterranean shrublands carbon sequestration: environmental and economic benefits. Mitig Adapt Strateg Glob Change 18(8):1167–1182

    Article  Google Scholar 

  • Herrero de Aza C, Turrión MB, Pando V, Bravo F (2011) Carbon in heartwood, sapwood and bark along the stem profile in three Mediterranean Pinus species. Ann For Sci 68(6):1067–1076

    Article  Google Scholar 

  • Hoen HF, Solberg B (1994) Potential and economic efficiency of carbon sequestration in forest biomass through silvicultural management. For Sci 40(3):429–451

    Google Scholar 

  • Hough B (2001). Estimación del contenido de carbono de los bosques. Simposio internacional. Medición y monitoreo de la Captura de carbono en Ecosistemas forestales. Valdivia, octubre, 2001

  • Ibañez JJ, Vayreda J, Gracia C (2002). Metodología complementaria al Inventario Forestal Nacional en Catalunya. En: Bravo F, Río M, del Peso C (eds) El inventario Forestal Nacional. Elemento clave para la gestión forestal sostenible. Fundación General de la Universidad de Valladolid, pp 67–77

  • IPCC Intergovernmental Panel on Climate Change (1996) Chapter 5: land use change and forestry. Greenhouse gas inventory reference manual. IPCC guidelines for National greenhouse gas inventories, Revised Version. London, vol 3, p 57

  • Jonasson S (1988) Evaluation of the point intercept method for the estimation of plant biomass. Oikos 52:10–106

    Article  Google Scholar 

  • Keeley JE (1993) Utility of growth rings in the age determination of chaparral shrubs. Madroño 40(1):1–14

    Google Scholar 

  • Kollmann F (1959) Tecnología de la madera y sus aplicaciones. Tomo I. Ministerio de Agricultura. IFIE, p 675

  • Lindner M, Karjalainen T (2007) Carbon inventory methods and carbon mitigation potentials of forests in Europe: a short review of recent progress. Eur J For Res 126(2):149–156

    Article  Google Scholar 

  • Maestre FT, Bowker MA, Puche MD, Belén Hinojosa M, Martínez I, García-Palacios P, Castillo AP, Soliveres S, Luzuriaga AL, Sánchez AM, Carreira JA, Gallardo A, Escudero A (2009) Shrub encroachment can reverse desertification in semi-arid Mediterranean grasslands. Ecol Lett 12:930–941

    Article  PubMed  Google Scholar 

  • Mangas JG, Lozano J, Cabezas-Díaz S, Virgós E (2008) The priority value of scrubland habitats for carnivore conservation in Mediterranean ecosystems. Biodivers Conserv 17(1):43–51

    Article  Google Scholar 

  • Marquez M, Núñez E, Escudero JC (1989) Dinámica del nitrógeno en un gradiente de edad de Cistus ladanifer L. Options Méditerranéennes- Série Sémin 3:151–155

    Google Scholar 

  • Mendoza-Ponce A, Galicia L (2010) Aboveground and belowground biomass and carbon pools in highland temperate forest landscape in Central Mexico. Forestry 83:497–506

    Article  Google Scholar 

  • Merino O, Martin MP, Martin A, Merino J (1990) Successional and temporal changes in primary productivity in two Mediterranean scrub ecosystems. Acta Oecol 11(1):103–112

    Google Scholar 

  • Mohren GMJ, Hasenauer H, Köhl M, Nabuurs GJ (2012) Forest inventories for carbon change assessments. Curr Opin Environ Sustain 4(6):686–695

    Article  Google Scholar 

  • MUCVA (2007) Mapa de usos y coberturas vegetales del suelo de Andalucía, escala 1:25.000. Consejería de Medio Ambiente. Junta de Andalucía

  • Muukkonen P, Mäkipää R, Laiho R, Minkkinen K, Vasander H, Finér L (2006) Relationship between biomass and percentage cover in understorey vegetation of boreal coniferous forests. Silva Fennica 40(2):231–245

    Article  Google Scholar 

  • Navar J (2010) Methods of assessment of aboveground tree biomass, biomass. Maggy Ndombo Benteke Momba (ed), ISBN: 978-953-307-113-8, InTech, doi:10.5772/9768. http://www.intechopen.com/books/biomass/methods-of-assessment-of-aboveground-tree-biomass

  • Navarro RM, Blanco P (2006) Estimation of above-ground biomass in shrubland ecosystems of southern Spain. Invest Agrar Sist Recur For 15(2):197–207

    Article  Google Scholar 

  • Noss RF (1990) Indicators for monitoring biodiversity: a hierarchical approach. Conserv Biol 4:355–364

    Article  Google Scholar 

  • Olano JM, Eugenio M, Escudero A (2011) Site effect is stronger than species identity in driving demographic responses of Helianthemum (Cistaceae) shrubs in gypsum environments. Am J Bot 98(6):1016–1023

    Article  PubMed  Google Scholar 

  • Ordóñez JAB, Jong BHJ, García-Oliva F, Aviña FL, Perez JV, Guerrero G, Martinez R, Masera O (2008) Carbon content in vegetation, litter, and soil under 10 different land-use and land-cover classes in the Central Highlands of Michoacan, Mexico. For Ecol Manag 255:2074–2084

    Article  Google Scholar 

  • Patón D, Azócar P, Tovar J (1998) Growth and productivity in forage biomass in relation to the age assessed by dendrochronology in the evergreen shrub Cistus ladanifer (L.) using different regression models. J Arid Environ 38:221–235

    Article  Google Scholar 

  • Patón D, Nuñez J, Bao D, Muñoz A (2002) Forage biomass of 22 shrub species from Monfragüe Natural Park (SW Spain) assessed by log–log regression models. J Arid Environ 52:223–231

    Article  Google Scholar 

  • Penman J, Gytarsky M, Hiraishi T, Krug T, Kruger D, Pipatti R, Buendia L, Miwa K, Ngara T, Tanabe K, Wagner F (2003) Good practice guidance for land use, land-use change and forestry. Intergovernmental Panel on Climate Change (IPCC), IGES, Hayama, Japan

    Google Scholar 

  • Pereira JC, Sequeira NM, Carreiras JM (1995) Structural properties and dimensional relations of some Mediterranean shrub fuels. Int J Wildland Fire 5:35–42

    Article  Google Scholar 

  • Pueyo Y, Moret-Fernández D, Saiz H, Bueno CG, Alados CL (2013) Relationships between plant spatial patterns, water infiltration capacity, and plant community composition in semi-arid Mediterranean ecosystems along stress gradients. Ecosystems 16(3):452–466

    Article  CAS  Google Scholar 

  • Qureshi A, Badola R, Hussain SA (2012) A review of protocols used for assessment of carbon stock in forested landscapes. Environ Sci Policy 16:81–89

    Article  Google Scholar 

  • Ravindranath NH, Ostwald M (2010) Carbon inventory methods: handbook for greenhouse gas inventory, carbon mitigation and roundwood production projects advances in global change research, vol 29. Springer, Heidelberg, p 308

    Google Scholar 

  • Rey PJ, Siles G, Alcántara JM (2009) Community-level restoration profiles in Mediterranean vegetation: nurse-based vs. traditional reforestation. J Appl Ecol 46:937–945

    Article  Google Scholar 

  • Riaño D, Chuvieco E, Ustin SL, Salas J, Rodríguez-Pérez JR, Ribeiro LM, Viegas DX, Moreno JM, Fernández H (2007) Estimation of shrub height for fuel-type mapping combining airborne LiDAR and simultaneous color infrared ortho imaging. Int J Wildland Fire 16(3):341–348

    Article  Google Scholar 

  • Rosa MD, Pereira JMC, Tarantola S (2011) Atmospheric emissions from vegetation fires in Portugal (1990–2008): estimates, uncertainty analysis, and sensitivity analysis. Atmos Chem Phys 11:2625–2640

    Article  CAS  Google Scholar 

  • Ruiz-Peinado R, Moreno G, Juarez E, Montero G, Roig S (2013) The contribution of two common shrub species to above ground and below ground carbon stock in Iberian Dehesa. J Arid Environ 91:22–30

    Article  Google Scholar 

  • San Miguel A, Roig S, Cañellas I (2008) Fruticeticultura, Gestión de arbustedos y matorrales. In: en Serrada R, Montero G, Reque J (eds) Compendio de Selvicultura aplicada en España. INIA y FUCOVASA, Madrid, pp 877–907

  • Schweingruber FH, Poschlod P (2005) Growth rings in herbs and shrubs: life span, age determination and stem anatomy. For Snow Landsc Res 79(3):195–415

    Google Scholar 

  • Sprugel DG (1983) Correcting for bias in log-transformed allometric equations. Ecology 64(1):209–210

    Article  Google Scholar 

  • Thomas SC, Martin AR (2012) Carbon content of tree tissues: a synthesis. Forests 3:332–352

    Article  Google Scholar 

  • Usó JL, Mateu J, Karjalainen T, Salvador P (1997) Allometric regression equations to determine above-ground biomass of mediterranean shrub. Plant Ecol 132:59–69

    Article  Google Scholar 

  • Van Cleve K, Alexander V (1981) Nitrogen cycling in tundra and boreal ecosystems. In: Clark FE, Rosswall T (eds) Terrestrial nitrogen cycles. Ecological Bulletin, Stockholm, pp 375–404

    Google Scholar 

  • Viana H, Vega-Nieva DJ, Torres LO, Lousada J, Aranha J (2012) Fuel characterization and biomass combustion properties of selected native woody shrub species from central Portugal and NW Spain. Fuel 102:737–745

    Article  CAS  Google Scholar 

  • Walkey A, Black IA (1934) An examination of the effect of the digestive method for determining soil organic matter and a proposed modication of the chronic and titration method. Soil Sci 37:29–38

    Article  Google Scholar 

  • Yarie J (1980) The role of understory vegetation in the nutrient cycle of forested ecosystems in the mountain hemlock biogeoclimatic zone. Ecology 61(6):1498–1514

    Article  Google Scholar 

  • Yarie J, Mead BR (1989) Biomass regression equations for determination of vertical structure of major understory species of Southeast Alaska. Northwest Sci 63(5):221–231

    Google Scholar 

  • Zar JH (1999) Biostatistical analysis. Pearson Education India

Download references

Acknowledgments

This studied was carried out under the framework of the Project RECAMAN (Income and Capital of the Montes de Andalusia), funded by the Junta de Andalusia, through the Environment Agency and Water Andalusia, whose scientific officer has been Professor CSIC D. Pablo Campos Palacín. The authors acknowledge the unconditional support of all members of RECAMAN, especially to people who have provided us with information necessary for the completion of this work. Thus, it would highlight the collaboration of Luis Guzman and Isabel Martin from AMAyA and Francisca de la Hoz from Junta de Andalusia. On the other hand, the authors also thank the comments provided at various stages of work by Sven Mutke and two anonymous referees. The technical support of D. Roberto Vallejo Bombin (General Directorate of Rural Development and Forestry Policy, MAGRAMA) is also acknowledged. Milagros Serrano, Dr. Isabel Gonzalez and Purificación Pereira from the Laboratory of Ecology and Soils of CIFOR-INIA are also acknowledged for the care and rigor devoted in the determination of carbon in 123 species. Aurora Bachiller is acknowledged for the help provided in determining the age of the different shrub samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Pasalodos-Tato.

Additional information

Communicated by Lluís Coll.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1234 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pasalodos-Tato, M., Ruiz-Peinado, R., del Río, M. et al. Shrub biomass accumulation and growth rate models to quantify carbon stocks and fluxes for the Mediterranean region. Eur J Forest Res 134, 537–553 (2015). https://doi.org/10.1007/s10342-015-0870-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-015-0870-6

Keywords

Navigation