Determination of Primary Metabolites, Vitamins and Minerals in Black Mulberry (Morus nigra) Berries Depending on Altitude

Bestimmung von Primärmetaboliten, Vitaminen und Mineralien in Schwarzen Maulbeeren (Morus nigra), angebaut in verschiedenen Höhenlagen

Abstract

This research was conducted to examine the effect of altitude on primary metabolites (soluble solids, total sugars, invert sugars, individual invert sugars (glucose, fructose, sucrose), total acidity, pH, organic acids (citric acid, malic acid), vitamins (C, A, B1, B2, B3) and mineral contents (K, P, Ca, Mg, Na, Fe, Cu, Zn, Mo)) in black mulberry (Morus nigra) berry extracts. The experiment was performed at three locations: Location 1—(187 m altitude), Location 2—(271 m altitude) and Location 3—(493 m altitude). High performance liquid chromatography (HPLC) was employed for the identification of individual invert sugars, organic acids and vitamins (A, B1, B2, B3) in berry extracts. Vitamin C was evaluated by spectrophotometry, whereas the mineral contents were determined by flame atomic absorption spectrophotometry. The contents of primary metabolites, vitamins and minerals varied widely depending on altitude. The synthesis and accumulation of the tested parameters changed with increasing altitude. The highest levels of sugars were found in Location 3, whereas the values of acids, vitamin A and the minerals Na, Mo and Fe were higher in Location 1. The accumulation of macronutrients K and P, and vitamins C and B3 was most intensive in Location 2. Altitude had no effect on the contents of vitamin B1 and B2, and the micronutrients Cu and Zn. The results suggest that black mulberry fruits are rich in primary metabolites, vitamins and minerals, and that altitude has an important effect on the synthesis of the tested parameters in the fruits.

This is a preview of subscription content, log in to check access.

References

  1. Anttonen MJ, Karjalainen RJ (2005) Environmental and genetic variation of phenolic compounds in red raspberry. J Food Comp Anal 18(18):759–769. https://doi.org/10.1016/j.jfca.2004.11.003

    Article  CAS  Google Scholar 

  2. Bennie J, Huntley B, Wiltshire A, Hill MO, Baxter R (2008) Slope, aspect and climate: spatially explicit and implicit models of topographic microclimate in chalk grassland. Ecol Modell 216(1):47–59. https://doi.org/10.1016/j.ecolmodel.2008.04.010

    Article  Google Scholar 

  3. Chen PN, Chu SC, Chiou HL, Kuo WH, Chiang CL, Hsieh YS (2006) Mulberry anthocyanins cyanidin 3‑rutinoside and cyanidin 3‑glucoside exhibited an inhibitory effect on the migration and invasion of a human lung cancer cell line. Cancer Lett 235(2):248–259. https://doi.org/10.1016/j.canlet.2005.04.033

    Article  PubMed  CAS  Google Scholar 

  4. Crespo P, Bordonaba JG, Terry LA, Carlen C (2010) Characterisation of major taste and health-related compounds of four strawberry genotypes grown at different Swiss production sites. Food Chem 122(1):16–24. https://doi.org/10.1016/j.foodchem.2010.02.010

    Article  CAS  Google Scholar 

  5. Egan H, Kirk R, Sawyer R (1981) The Luff Schoorl method. Sugars and preserves. In: Egan H, Kirk R, Sawyer R (eds) Pearson’s chemical analysis of foods, 8th edn. Longman Scient Tech, Harlow, pp 151–153

    Google Scholar 

  6. Ercisli S, Orhan E (2007) Chemical composition of white (Morus alba), red (Morus rubra) and black (Morus nigra) mulberry fruits. Food Chem 103:1380–1384. https://doi.org/10.1016/j.foodchem.2006.10.054

    Article  CAS  Google Scholar 

  7. Ercisli S, Tosun M, Duralija B, Voća S, Sengul M, Turan M (2010) Phytochemical content of some black (Morus nigra L.) and purple (Morus rubra L.) mulberry genotypes. Food Technol Biotechnol 48(1):102–106

    CAS  Google Scholar 

  8. Eyduran SP, Ercisli S, Akin M, Beyhan O, Gecer MK, Eyduran E, Erturk YE (2015) Organic acids, sugars, vitamin C, antioxidant capacity, and phenolic compounds in fruits of white (Morus alba L.) and black (Morus nigra L.) mulberry genotypes. J Appl Bot Food Qual 88:134–138. https://doi.org/10.5073/JABFQ.2015.088.019

    Article  CAS  Google Scholar 

  9. Fischer G, Ebert G, Luedders P (2007) Production, seeds and carbohydrate contents of cape gooseberry (Physalis peruviana L.) fruits grown at two contrasting Colombian altitudes. J Appl Bot Food Qual 81:29–35

    CAS  Google Scholar 

  10. Gundogdu M, Muradoglu F, Gazioğlu Sensoy RI, Yılmaz H (2011) Determination of fruit chemical properties of Morus nigra L., Morus alba L. and Morus rubra L. by HPLC. Sci Hortic 132:37–41. https://doi.org/10.1016/j.scienta.2011.09.035

    Article  CAS  Google Scholar 

  11. Hassimotto NMA, Genovese MI, Lajolo FM (2007) Identification and characterization of anthocyanins from wild mulberry (Morus nigra L.) growing in Brazil. Food Sci Technol Int 13:17–25. https://doi.org/10.1177/1082013207075602

    Article  CAS  Google Scholar 

  12. Hegedűs A, Balogh E, Engel R, Sipos BZ, Papp J, Blázovics A, Stefanovits-Bányai E (2008) Comparative nutrient element and antioxidant characterization of berry fruit species and cultivars grown in Hungary. Hortic Sci 43(6):1711–1715

    Google Scholar 

  13. Imran M, Khan H, Shah M, Khan R, Khan F (2010) Chemical composition and antioxidant activity of certain Morus species. J Zhejiang Univ Sci B 11(12):973–980. https://doi.org/10.1631/jzus.B1000173

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Kallio H, Hakala M, Pelkkikangas A, Lapveteläinen A (2000) Sugars and acids of strawberry varieties. Eur Food Res Technol 212(1):81–85

    Article  CAS  Google Scholar 

  15. Kim HG, Ju MS, Shim JS, Kim MC, Lee SH, Huh Y, Kim SY, Oh MS (2010) Mulberry fruit protectes dopaminergic neurons in toxin-induced Parkinson’s disease models. Br J Nutr 104(1):8–16. https://doi.org/10.1017/S0007114510000218

    Article  PubMed  CAS  Google Scholar 

  16. Koyuncu F (2004) Organic acid composition of native black mulberry fruit. Chem Nat Compd 40:367–369

    Article  CAS  Google Scholar 

  17. Koyuncu F, Çetinbaş M, Ibrahim E (2014) Nutritional constituents of wild-grown black mulberry (Morus nigra L.). J Appl Bot Food Qual 87:93–96. https://doi.org/10.5073/JABFQ.2014.087.014

    Article  CAS  Google Scholar 

  18. Lian YS, Lu SG, Xue SK, Chen XL (2000) Biology and chemistry of the genus Hippophae. Gansu Science and Technology Press, Lanzhou, pp 107–110

    Google Scholar 

  19. Mikulič-Petkovšek M, Schmitzer V, Slatnar A, Štampar F, Veberič R (2012) Composition of sugars, organic acids, and total phenolics in 25 wild or cultivated berry species. J Food Sci 77(10):1064–1070. https://doi.org/10.1111/j.1750-3841.2012.02896.x

    Article  CAS  Google Scholar 

  20. Okatan V, Polat M, Aşkin MA (2016) Some physico-chemical characteristics of black mulberry (Morus nigra L.) in bitlis. Sci Pap Ser B Hortic LX:27–30

    Google Scholar 

  21. Ozgen M, Serce S, Kaya C (2009) Phytochemical and antioxidant properties of anthocyanin-rich Morus nigra and Morus rubra fruits. Sci Hortic 119(3):275–279. https://doi.org/10.1016/j.scienta.2008.08.007

    Article  CAS  Google Scholar 

  22. Pawlowski MA, Oleszek W, Braca A (2008) Quali-quantitative analyses of flavonoids of Morus nigra L. and Morus alba L. (Moraceae) fruits. J Agric Food Chem 56:3377–3380. https://doi.org/10.1021/jf703709r

    Article  CAS  Google Scholar 

  23. Rieger G, Müller M, Guttenberger H, Bucar F (2008) Influence of altitudinal variation on the content of phenolic compounds in wild populations of Calluna vulgaris, Sambucus nigra, and Vaccinium myrtillus. J Agric Food Chem 56(19):9080–9086. https://doi.org/10.1021/jf801104e

    Article  PubMed  CAS  Google Scholar 

  24. Sass-Kiss A, Kiss J, Milotay P, Kerek MM, Toth-Markus M (2005) Differences in anthocyanin and carotenoid content of fruits and vegetables. Food Res Int 38(8/9):1023–1029. https://doi.org/10.1016/j.foodres.2005.03.014

    Article  CAS  Google Scholar 

  25. Walker PG, Viola R, Woodhead M, Jorgensen L, Gordon SL, Brennan RX, Hancock RD (2010) Ascorbic acid content of blackcurrant fruit is influenced by both genetic and environmental factors. Funct Plant Sci Biotechnol 4:40–52

    Google Scholar 

  26. Yang J, Zhang J (2010) Grain-filling problem in ‘super’ rice. J Exp Bot 61(1):1–5. https://doi.org/10.1093/jxb/erp348

    Article  PubMed  CAS  Google Scholar 

  27. Yilmaz KU, Zengin Y, Ercisli S, Demirtas MN, Kan T, Nazli AR (2012) Morphological diversity on fruit characteristics among some selected mulberry genotypes from Turkey. J Anim Plant Sci 22(1):211–214

    CAS  Google Scholar 

  28. Zheng J, Yang B, Tuomasjukka S, Ou S, Kallio H (2009) Effects of latitude and weather conditions on contents of sugars, fruit acids, and ascorbic acid in black currant (Ribes nigrum L.) juice. J Agric Food Chem 57(7):2977–2987. https://doi.org/10.1021/jf8034513

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Svetlana M. Paunović.

Ethics declarations

Conflict of interest

S.M. Paunović, P. Mašković and M. Milinković declare that they have no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Paunović, S.M., Mašković, P. & Milinković, M. Determination of Primary Metabolites, Vitamins and Minerals in Black Mulberry (Morus nigra) Berries Depending on Altitude. Erwerbs-Obstbau 62, 355–360 (2020). https://doi.org/10.1007/s10341-020-00509-7

Download citation

Keywords

  • Black mulberry
  • Altitude
  • Primary metabolites
  • Vitamins
  • Minerals

Schlüsselwörter

  • Schwarze Maulbeere
  • Morus nigra
  • Höhenlage
  • Primärmetabolite
  • Vitamine
  • Mineralien