Skip to main content
Log in

A computational model to predict the population dynamics of Spodoptera frugiperda

  • Original Paper
  • Published:
Journal of Pest Science Aims and scope Submit manuscript

Abstract

Among lepidopteran insects, the fall armyworm, Spodoptera frugiperda, deserves special attention because of its agricultural importance. Different computational approaches have been proposed to clarify the dynamics of fall armyworm populations, but most of them have not been tested in the field and do not include one of the most important variables that influence insect development: the temperature. In this study, we developed a computational model that is able to represent the spatio-temporal dynamics of fall armyworms in agricultural landscapes composed of Bt and non-Bt areas, allowing the user to define different input variables, such as the crop area, thermal requirements of S. frugiperda, migration rate, rate of larval movement, and insect resistance to transgenic crops. In order to determine the efficiency of the proposed model, we fitted it using a 4-year (2012–2015) FAW monitoring data for an area located in northern Florida, USA. Simulations were run to predict the number of adults in 2016 and examine possible scenarios involving climate change. The model satisfactorily described the main outbreaks of fall armyworms, estimating values for parameters associated with insect dynamics, i.e., resistance-allele frequency (0.15), migration rate (0.48) and rate of larval movement (0.04). A posterior sensitivity analysis indicated that the frequency of the resistance allele most influenced the model, followed by the migration rate. Our simulations indicated that an increase of 1 °C in weekly mean temperatures could almost double the levels of fall armyworm populations, drawing attention to the possible consequences of temperature rises for pest dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ali A, Luttrell RG, Schneider JC (1990) Effects of temperature and larval diet on development of the fall armyworm (Lepidoptera: Noctuidae). Ann Entomol Soc Am 83:725–733

    Article  Google Scholar 

  • Amarasekate P, Sifuentes R (2012) Elucidating the temperature response of survivorship in insects. Funct Ecol 26:959–968

    Article  Google Scholar 

  • Barfield CS, Ashley TR (1987) Effects of corn phenology and temperature on the life cycle of the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). Fla Entomol 70:110–117

    Article  Google Scholar 

  • Barfield CS, Mitchell ER, Poe SL (1978) A temperature-dependent model for fall armyworm development. Ann Entomol Soc Am 71:70–74

    Article  Google Scholar 

  • Barfield CS, Stimac JL, Keller MA (1980) State-of-the-art for predicting damaging infestations of fall armyworm. Fla Entomol 63:364–375

    Article  Google Scholar 

  • Barros EM, Torres JB, Bueno AF (2010) Oviposition, development, and reproduction of Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) fed on different hosts of economic importance. Neotrop Entomol 39:996–1001

    Article  PubMed  Google Scholar 

  • Busato GR, Grützmacher AD, Garcia MS, Giolo FP, Zotti MJ, Bandeira JM (2005) Exigências térmicas e estimativa do número de gerações dos biótipos “milho” e “arroz” de Spodoptera frugiperda. Pesqui Agropec Bras 40:329–335

    Article  Google Scholar 

  • Cannon RJC (1998) The implications of predicted climate change for insect pests in the UK, with emphasis on non-indigenous species. Glob Change Biol 4:785–796

    Article  Google Scholar 

  • Carroll MW, Head G, Caprio M (2012) When and where a seed mix refuge makes sense for managing insect resistance to Bt plants. Crop Prot 38:74–79

    Article  Google Scholar 

  • Cerda H, Wright DJ (2004) Modeling the spatial and temporal location of refugia to manage resistance in Bt transgenic crops. Agric Ecosyst Environ 102:163–174

    Article  Google Scholar 

  • Chambers LD (2000) The practical handbook of genetic algorithms, 2nd edn. Chapman and Hall, Boca Raton

    Book  Google Scholar 

  • Cruz I, Figueiredo MLC, Oliveira AC, Vasconcelos CA (1999) Damage of Spodoptera frugiperda (Smith) in different maize genotypes cultivated in soil under three levels of aluminum saturation. Int J Pest Manag 45:293–296

    Article  Google Scholar 

  • Dangal V, Huang F (2015) Fitness costs of Cry1F resistance in two populations of fall armyworm, Spodoptera frugiperda (J.E. Smith), collected from Puerto Rico and Florida. J Invertebr Pathol 127:81–86

    Article  CAS  PubMed  Google Scholar 

  • Dixon AFG, Honek A, Keil P, Kotela ALS, Jarosik V (2008) Relationship between the minimum and maximum temperature thresholds for development in insects. Funct Ecol 23:257–264

    Article  Google Scholar 

  • Dos Santos LM, Redaelli LR, Diefenbach LMG, Efrom CFS (2004) Fertilidade e longevidade de Spodoptera frugiperda (J.E. Smith) (Lepidoptera:Noctuidae) em genótipos de milho. Ciênc Rural 34:345–350

    Article  Google Scholar 

  • Farias PRS, Barbosa JC, Busoli AC (2001) Spatial distribution of the fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae), on corn crop. Neotrop Entomol 30:681–689

    Article  Google Scholar 

  • Farias JR, Andow DA, Horikoshi RJ, Sorgatto RJ, Fresia P, Santos AC, Omoto C (2014) Field-evolved resistance to Cry1F maize by Spodoptera frugiperda (Lepidoptera: Noctuidae) in Brazil. Crop Prot 64:150–158

    Article  Google Scholar 

  • Farias JR, Andow DA, Horikoshi RJ, Bernardi D, Ribeiro RS, Nascimento ARB, Santos AC, Omoto C (2016) Frequency of Cry1F resistance alleles in Spodoptera frugiperda (Lepidoptera: Noctuidae) in Brazil. Pest Manag Sci 72:2295–2302

    Article  CAS  PubMed  Google Scholar 

  • Ferreira CP, Godoy WAC (2014) Ecological modelling applied to entomology. Springer, Switzerland

    Book  Google Scholar 

  • Florida Automated Weather Network, IFAS, University of Florida (2017) Archived Weather Data. https://fawn.ifas.ufl.edu/. Accessed 19 Aug 2017

  • Gallo D, Nakano O, Silveira Neto S, Carvalho RPL, Batista GC, Berti Filho E, Parra JRP, Zucchi RA, Alves SB, Vendramin JD, Marchini LC, Lopes JRS, Omoto C (2002) Entomologia agrícola. FEALQ, Piracicaba

    Google Scholar 

  • Gao G-Z, Perkins LE, Zalucki MP, Lu Z-Z, Ma J-H (2013) Effect of temperature on the biology of Acyrthosiphon gossypii Mordvilko (Homoptera: Aphididae) on cotton. J Pest Sci 86:167–172

    Article  Google Scholar 

  • Garcia AG, Godoy WAC (2016) A theoretical approach to analyze the parametric influence on spatial patterns of Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) populations. Neotrop Entomol 46:283–288

    Article  PubMed  Google Scholar 

  • Garcia A, Cônsoli FL, Godoy WAC, Ferreira CP (2014) A mathematical approach to simulate spatio-temporal patterns of an insect-pest, the corn rootworm Diabrotica speciosa (Coleoptera: Chrysomelidae) in intercropping systems. Land Ecol 29:1531–1540

    Article  Google Scholar 

  • Garcia AG, Cônsoli FL, Ferreira CP, Godoy WAC (2016) Predicting evolution of insect resistance to transgenic crops in within-field refuge configurations, based on larval movement. Ecol Complex 28:94–103

    Article  Google Scholar 

  • Garcia AG, Godoy WAC, Thomas JMG, Nagoshi RN, Meagher RL (2018) Delimiting strategic zones for the development of fall armyworm (Lepidoptera: Noctuidae) on corn in the State of Florida. J Econ Entomol 111:120–126

    Article  CAS  PubMed  Google Scholar 

  • Gunay F, Alten B, Ozsoy ED (2010) Estimating reaction norms for predictive population parameters, age specific mortality, and mean longevity in temperature-dependent cohorts of Culex quinquefasciatus Say (Diptera: Culicidae). J Vector Ecol 35:354–362

    Article  PubMed  Google Scholar 

  • Hardy GH (1908) Mendelian proportions in a mixed population. Science 28:49–50

    Article  CAS  PubMed  Google Scholar 

  • Head G, Campbell LA, Carroll M, Clark T, Galvan T, Hendrix WM, Prasifka PL, Price P, Storer NP, Stork L (2014) Movement and survival of corn rootworm in seed mixtures of SmartStax® insect-protected corn. Crop Prot 58:14–24

    Article  Google Scholar 

  • Hogg DB, Pitre HN, Anderson RE (1982) Assessment of early-season phenology of the fall armyworm (Lepidoptera: Noctuidae) in Mississippi. Environ Entomol 11:705–710

    Article  Google Scholar 

  • Huang F, Qureshi JA, Meagher RL, Reisig DD, Head GP, Andow DA, Ni X, Kerns D, Buntin GD, Niu Y, Yang F, Dangal V (2014) Cry1F resistance in fall armyworm Spodoptera frugiperda: single gene versus pyramided Bt maize. PLoS One 9(11):e112958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jorgensen SE, Chon TS (2009) Model types available for ecological modelling. In: Jorgensen SE, Chon TS, Friedrich R (eds) Handbook of ecological modelling and informatics. WIT Press, Southampton, pp 9–40

    Chapter  Google Scholar 

  • Joshi DS (1996) Effect of fluctuating and constant temperatures on development, adult longevity and fecundity in the mosquito Aedes kombeini. J Therm Biol 21:151–154

    Article  Google Scholar 

  • Labatte JM (1994) Modelling the larval development of Spodoptera frugiperda (J. E. Smith), (Lepidoptera: Noctuidae) on corn. J Appl Entomol 118:172–176

    Article  Google Scholar 

  • Liebhold A, Bentz B (2011) Insect disturbance and climate change. U.S. Department of Agriculture, Forest Service, Climate Change Resource Center. www.fs.usda.gov/ccrc/topics/insect-disturbance/insect-disturbance. Accessed 14 May 2016

  • Luginbill P (1928) The fall army worm. U.S. Department of agriculture technical bulletin, vol 34, Washington, pp 1–92

  • Malaquias JB, Godoy WAC, Garcia AG, Ramalho FS, Omoto C (2017) Larval Dispersal of Spodoptera frugiperda strains on Bt cotton: A model for understanding resistance evolution and consequences for its management. Sci Rep 7:16109. https://doi.org/10.1038/s41598-017-16094-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinelli S, Barata RM, Zucchi MI, Silva-Filho MC, Omoto C (2006) Molecular variability of Spodoptera frugiperda (Lepidoptera: Noctuidae) populations associated to maize and cotton crops in Brazil. J Econ Entomol 99:519–526

    Article  CAS  PubMed  Google Scholar 

  • Meagher RL, Mitchell ER (2001) Collection of fall armyworm (Lepidoptera: Noctuidae) using selected pheromone lures and trap designs. J Entomol Sci 36:135–142

    Article  CAS  Google Scholar 

  • Meagher RL, Nagoshi RN, Armstrong JS, Niogret J, Epsky ND, Flanders KL (2013) Captures and host strains of fall armyworm (Lepidoptera: Noctuidae) males in traps baited with different commercial pheromone blends. Fla Entomol 96:729–740

    Article  Google Scholar 

  • Mitchell M (1999) An introduction to genetic algorithms. MIT Press, Cambridge

    Google Scholar 

  • NOAA. National Climate Report—2015. https://www.ncdc.noaa.gov. Accessed 14 May 2015

  • NOAA. National Climate Report—2016. https://www.ncdc.noaa.gov. Accessed 14 May 2016

  • Omoto C, Bernardi O, Salmeron E, Sorgatto RJ, Dourado PM, Crivellari A, Carvalho RA, Willse A, Martinelli S, Head GP (2016) Field-evolved resistance to Cry1Ab maize by Spodoptera frugiperda in Brazil. Pest Manag Sci 72:1727–1736

    Article  CAS  PubMed  Google Scholar 

  • Padmavathi C, Katti G, Sailaja V, Padmakumari AP, Jhansilakshmi V, Prabhakar M, Prasad YG (2013) Temperature thresholds and thermal requirements for the development of the rice leaf folder, Cnaphalocrocis medinalis. J Insect Sci 13:96

    Article  PubMed  PubMed Central  Google Scholar 

  • Pair SD, Raulston JR, Rummel DL, Westbrook JK, Wolf WW, Sparks AN, Schuster MF (1987) Development and production of corn earworm and fall armyworm in the Texas high plains: evidence for reverse fall migration. Southwest Entomol 12:89–100

    Google Scholar 

  • Rao MS, Swathi P, Rao CAR, Rao KV, Raju BMK, Srinivas K, Manimanjari D, Maheswari M (2015) Model and scenario variations in predicted number of generations of Spodoptera litura Fab. on peanut during future climate change scenario. PLoS ONE 10(2):e0116762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren J, Wang X, Jin X, Manocha D (2016) Simulating flying insects using dynamics and data-driven noise modeling to generate diverse collective behaviors. PLoS One 11(5):e0155698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rose AH, Silversides RH, Lindquist OH (1975) Migration fight by an aphid, Rhopalosiphum maidis (Hemiptera: Aphididae) and a noctuid, Spodoptera frugiperda (Lep.: Noctuidae). Can Entomol 107:567–576

    Article  Google Scholar 

  • Saltelli A, Tarantola S, Campolongo F, Ratto M (2004) Sensitivity analysis in practice: a guide to assessing scientific methods. Wiley, Chichester

    Google Scholar 

  • Simmons AM (1993) Effects of constant and fluctuating temperatures and humidities on the survival of Spodoptera frugiperda pupae (Lepidoptera: Noctuidae). Fla Entomol 72:333–340

    Article  Google Scholar 

  • Sisterson MS, Carrière Y, Dennehy TJ, Tabashnik BE (2005) Evolution of resistance to transgenic crops: interaction between insect movement and field distribution. J Econ Entomol 98:1751–1762

    Article  PubMed  Google Scholar 

  • Snow JW, Copeland WW (1969) Fall Armyworm: Use of virgin female traps to detect males and to determine seasonal distribution. U.S. Department of agriculture production research report, vol 110, Washington, DC, pp 1–9

  • Soulsby RL, Thomas JA (2012) Insect population curves: modelling and application to butterfly transect data. Methods Ecol Evol 3:832–841

    Article  Google Scholar 

  • Sparks AN (1979) A review of the biology of the fall armyworm. Fla Entomol 62:82–87

    Article  Google Scholar 

  • Tingle FC, Mitchell ER (1979) Spodoptera frugiperda factor affecting pheromone trap catches in corn and peanuts. Environ Entomol 8:989–992

    Article  Google Scholar 

  • UFWEATHER (2015) It wasn’t just the warmest year EVER in Gainesville. http://ufweather.org. Accessed 13 May 2015

  • Vélez AM, Spencer TA, Alves AP, Moellenbeck D, Meagher RL, Chirakkal H, Siegfried BD (2013) Inheritance of Cry1F resistance, cross-resistance and frequency of resistant alleles in Spodoptera frugiperda (Lepidoptera: Noctuidae). Bull Entomol Res 103:700–713

    Article  CAS  PubMed  Google Scholar 

  • Vélez AM, Spencer TA, Alves AP, Crespo ALB, Siegfried BD (2014) Fitness costs of Cry1F resistance in fall armyworm, Spodoptera frugiperda. J Appl Entomol 128:315–325

    Article  CAS  Google Scholar 

  • Vilarinho EC, Fernandes OA, Hunt TE, Caixeta DF (2011) Movement of Spodoptera frugiperda adults (Lepidoptera: Noctuidae) in maize in Brazil. Fla Entomol 94:480–488

    Article  Google Scholar 

  • Waddill VH, Mitchell ER, Denton WH, Poe SL, Schuster DJ (1982) Seasonal abundance of fall armyworm and velvetbean caterpillar (Lepidoptera: Noctuidae) at four locations in Florida. Fla Entomol 65:350–354

    Article  Google Scholar 

  • Westbrook JK, Nagoshi RN, Meagher RL, Fleischer SJ, Jairam S (2016) Modeling seasonal migration of fall armyworm moths. Int J Biometeorol 60:255–267

    Article  CAS  PubMed  Google Scholar 

  • Wild S (2017) African countries mobilize to battle invasive caterpillar. Nature, vol 543, p 13. http://www.nature.com/news/african-countries-mobilize-to-battle-invasive-caterpillar1.21527. Accessed 17 Sept 2017

  • Wood JR, Poe SL, Leppla NC (1979) Winter survival of fall armyworm pupae in Florida. Environ Entomol 8:249–252

    Article  Google Scholar 

  • Yadav R, Chang N-T (2014) Effects of temperature on the development and population growth of the melon thrips, Thrips palmi, on eggplant, Solanum melongena. J Insect Sci 14:78

    Article  PubMed  PubMed Central  Google Scholar 

  • Young JR (1979) Fall armyworm: control with insecticides. Fla Entomol 62:130–133

    Article  Google Scholar 

Download references

Funding

AGG holds a fellowship awarded by FAPESP (2015/10640-2, 2014/16609-7) and held a Foreign Research Fellowship awarded by FAPESP (2016/00831-8) during the project execution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriano G. Garcia.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The article does not contain any studies with human participants or animals.

Additional information

Communicated by M. Jonsson.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garcia, A.G., Ferreira, C.P., Godoy, W.A.C. et al. A computational model to predict the population dynamics of Spodoptera frugiperda. J Pest Sci 92, 429–441 (2019). https://doi.org/10.1007/s10340-018-1051-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10340-018-1051-4

Keywords

Navigation