Skip to main content
Log in

New PCR–RFLP diagnostics methodology for detecting Varroa destructor resistant to synthetic pyrethroids

  • Rapid Communication
  • Published:
Journal of Pest Science Aims and scope Submit manuscript

Abstract

A significant share of the current seasonal losses of honey bee colonies can be attributed to the ectoparasitic mite Varroa destructor. Its direct feeding behaviour and virus vectoring decimate the colony until collapse if there is no effective control management in place. The synthetic pyrethroids such as tau-fluvalinate and flumethrin were intensively used to control the mite until multiple cases of resistance were reported since the early 1990s. Previous studies have shown that there are three different mutations at amino acid position 925 (L925V, I and M) of the V. destructor voltage-gated sodium channel associated with the resistance to these compounds. Here, we report the development of a new PCR–RFLP methodology to discriminate between susceptible and pyrethroid-resistant Varroa destructor mites. This is a DNA-based assay that proved to be as accurate and robust as the previously reported TaqMan®-based high-throughput genotyping assays but significantly cheaper and more accessible to low-resourced laboratories. It is also easier to identify resistant mites using the new assay. The beekeeping community will surely welcome this new technology since there are very few effective acaricides to deal with the mite. They are aware that pyrethroids can be very effective in absence of resistance so having the possibility to use them as alternative to other compounds as part of an integrated management strategy would be of great help for long-term controlling of the parasite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

Download references

Acknowledgements

Joel González-Cabrera was supported by the Spanish Ministry of Economy and Competitiveness, Ramón y Cajal Program (RYC-2013-13834). The work at the Universitat de València was funded by a grant from the Spanish Ministry of Economy and Competitiveness (CGL2015‐65025‐R, MINECO/FEDER, UE) and by Bayer Animal Health GmbH, Leverkusen, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel González-Cabrera.

Ethics declarations

Conflict of interest

Joel González-Cabrera and Carmen Sara Hernández-Rodríguez are not employees of Bayer but part of the work carried out at the Universitat de València was supported by a grant from Bayer Animal Health GmbH. There are no more competing interests to declare.

Additional information

Communicated by C. Cutler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Millán-Leiva, A., Hernández-Rodríguez, C.S. & González-Cabrera, J. New PCR–RFLP diagnostics methodology for detecting Varroa destructor resistant to synthetic pyrethroids. J Pest Sci 91, 937–941 (2018). https://doi.org/10.1007/s10340-018-0964-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10340-018-0964-2

Keywords

Navigation