Advertisement

Journal of Pest Science

, Volume 91, Issue 2, pp 515–522 | Cite as

Seed treatment of maize with Bacillus pumilus strain INR-7 affects host location and feeding by Western corn rootworm, Diabrotica virgifera virgifera

  • Joseph O. Disi
  • Joseph W. Kloepper
  • Henry Y. Fadamiro
Original Paper

Abstract

Western corn rootworm (WCR), Diabrotica virgifera virgifera is an important pest of maize and the costs of control and yield loss are estimated at $1 billion per year in the USA. As a specialist herbivore, WCR has evolved to use host odors and secondary plant metabolites as cues for host location and phagostimulants. This study reports that rhizobacteria applied as seed treatments to maize affect host-seeking behavior of WCR larvae. The results of a dual-choice test showed that a significantly higher percentage (76%) of WCR larvae chose untreated control plants than plants treated with the single Bacillus pumilus strain INR-7 (24%). In no-choice feeding tests, WCR larvae-fed INR-7-treated plants weighed significantly less than larvae-fed untreated plants or plants treated with bacilli blends. Overall, the results demonstrate that B. pumilus INR-7 can enhance resistance of maize against damage by WCR larvae. The implication of these findings is discussed in the context of using beneficial rhizobacteria in integrated pest management of corn rootworm.

Keywords

Bacillus species Bacilli mixtures Coleoptera Chrysomelidae Induced systemic resistance Biological control 

Notes

Acknowledgements

We thank Mr. John Mcinroy for assisting with bacilli preparations. This project was supported by the Alabama Agricultural Experiment Station and the Hatch program of the National Institute of Food and Agriculture, U.S. Department of Agriculture.

Funding

This project was supported by the Alabama Agricultural Experiment Station and the Hatch program of the National Institute of Food and Agriculture, U.S. Department of Agriculture.

Compliance with ethical standards

Conflict of interest

All authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

10340_2017_927_MOESM1_ESM.docx (310 kb)
Supplementary material 1 (DOCX 309 kb)
10340_2017_927_MOESM2_ESM.docx (1.5 mb)
Supplementary material 2 (DOCX 1509 kb)

References

  1. Adesemoye AO, Torbert HA, Kloepper JW (2010) Increased plant uptake of nitrogen from 15N-depleted fertilizer using plant growth-promoting rhizobacteria. Appl Soil Ecol 46:54–58. doi: 10.1016/j.apsoil.2010.06.010 CrossRefGoogle Scholar
  2. Ban D, Ban SG, Oplanic M, Horvat J, Novak B, Zanic K, Znidarcic D (2011) Growth and yield response of watermelon to in-row plant spacings and Mycorrhiza. Chil J Agric Res 71:497–502CrossRefGoogle Scholar
  3. Bernklau EJ, Bjostad LB (2008) Identification of feeding stimulants in corn roots for western corn rootworm (Coleoptera: Chrysomelidae) larvae. J Econ Entomol 101(2):341–351CrossRefPubMedGoogle Scholar
  4. Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350. doi: 10.1007/s11274-011-0979-9 CrossRefPubMedGoogle Scholar
  5. Bjostad LB, Hibbard BE (1992) 6-methoxy-2-benzoxazolinine: a semiochemical for host location by western corn rootworm larvae. J Chem Ecol 18(7):931–944CrossRefPubMedGoogle Scholar
  6. Bukovinszky T, Van Veen FJF, Jongema Y, Dicke M (2008) Direct and indirect effects of resource quality on food web structure. Science 319:804–807. doi: 10.1126/science.1148310 CrossRefPubMedGoogle Scholar
  7. Chandler LD (2003) Corn rootworm areawide management program: United States Department of Agriculture-Agricultural Research Service. Pest Manag Sci 59:605–608CrossRefPubMedGoogle Scholar
  8. Domenech J, Reddy MS, Kloepper JW, Ramos B (2006) Combined application of the biological product LS213 with Bacillus, Pseudomonas or Chryseobacterium for growth promotion and biological control of soil-borne diseases in pepper and tomato. Biocontrol 51:245–258CrossRefGoogle Scholar
  9. Erb M, Huber M, Robert CAM, Ferrieri AP, Machado RAR, Arce CCM (2013) The role of plant primary and secondary metabolites in root-herbivore behaviour, nutrition and physiology. Adv Insect Physiol 45:53–95CrossRefGoogle Scholar
  10. Gadhave KR, Gange AC (2016) Plant-associated Bacillus spp. alter life-history traits of the specialist insect Brevicoryne brassicae L. Agric For Entomol 18:35–42. doi: 10.1111/afe.12131 CrossRefGoogle Scholar
  11. Gange AC, Brown VK, Sinclair GS (1994) Reduction of black vine weevil larval growth by vesicular arbuscular mycorrhizal infection. Entomol Exp Appl 70:115–119CrossRefGoogle Scholar
  12. Gange AC, Brown VK, Aplin DM (2005) Ecological specificity of arbuscular mycorrhizae: evidence from foliar- and seed-feeding insects. Ecology 86:603–611. doi: 10.1890/04-0967 CrossRefGoogle Scholar
  13. Gassmann AJ, Petzold-maxwell JL, Keweshan RS, Dunbar MW (2011) Field-evolved resistance to Bt maize by western corn rootworm. PLoS ONE 6(7):e22629. doi: 10.1371/journal.pone.0022629 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Gray ME, Sappington TW, Miller NJ, Moeser J, Bohn MO (2009) Adaptation and invasiveness of western corn rootworm: intensifying research on a worsening pest. Annu Rev Entomol 54:303–321CrossRefPubMedGoogle Scholar
  15. Hiltpold I, Hibbard BE (2016) Neonate larvae of the specialist herbivore Diabrotica virgifera virgifera do not exploit the defensive volatile (E)-β-caryophyllene in locating maize roots. J Pest Sci 89:853–858. doi: 10.1007/s10340-015-0714-7 CrossRefGoogle Scholar
  16. Jetiyanon K, Kloepper JW (2002) Mixtures of plant growth-promoting rhizobacteria for induction of systemic resistance against multiple plant diseases. Biol Control 24:285–291. doi: 10.1016/S1049-9644(02)00022-1 CrossRefGoogle Scholar
  17. Kloepper J, Schroth M (1981) Relationship of in vitro antibiosis of plant growth-promoting rhizobacteria to plant growth and the displacement of root microflora. Phytopathology 71:1020–1024CrossRefGoogle Scholar
  18. Kloepper JW, Ryu C-M, Zhang S (2004a) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259–1266. doi: 10.1094/PHYTO.2004.94.11.1259 CrossRefPubMedGoogle Scholar
  19. Kloepper J, Reddy MS, Rodríguez-Kabana R, Kenney DS, Kokalis-Burelle N, Burelle N, Martinez-Ochoa N, Vavrina CS (2004b) Application for rhizobacteria in transplant production and yield enhancement. Acta Hortic 631:219–229. doi: 10.17660/ActaHortic.2004.631.28 CrossRefGoogle Scholar
  20. Kloepper JW, Gutiérrez-Estrada A, McInroy JA (2007) Photoperiod regulates elicitation of growth promotion but not induced resistance by plant growth-promoting rhizobacteria. Can J Microbiol 53:159–167. doi: 10.1139/w06-114 CrossRefPubMedGoogle Scholar
  21. Kloepper JW, Ngumbi EN, Nangle KW, Fadamiro HY (2013) Inoculants including bacillus bacteria for inducing production of volatile organic compounds in plants. United States Patent, 2025–2037Google Scholar
  22. Liu K, Garrett C, Fadamiro H, Kloepper JW (2016) Induction of systemic resistance in Chinese cabbage against black rot by plant growth-promoting rhizobacteria. Biol Control 99:8–13. doi: 10.1016/j.biocontrol.2016.04.007 CrossRefGoogle Scholar
  23. Meihls LN, Higdon ML, Siegfried BD, Miller NJ, Sappington TW, Ellersieck MR, Spencer TA, Hibbard BE (2008) Increased survival of western corn rootworm on transgenic corn within three generations of on-plant greenhouse selection. PNAS 105(49):19177–19182. doi: 10.1073/pnas.0805565105 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Meinke L, Siegfreid BD, Wright RJ, Chandler LD (1998) Adult susceptibility of Nebraska western corn root worm (Coleoptera: Chrysomelidae) populations to selected insecticides. J Econ Entomol 91:594–600CrossRefGoogle Scholar
  25. Metcalf ER (1986) Forward. In: Krysan JL, Miller TA (eds) Methods for the study of pest Diabrotica. Springer, New YorkGoogle Scholar
  26. Moellenbeck DJ, Peters ML, Bing JW, Rouse JR, Higgins LS, Sims L, Nevshemal T, Marshall L, Ellis RT, Bystrak PG, Lang BA, Stewart JL, Kouba K, Sondag V, Gustafson V, Nour K, Xu D, Swenson J, Zhang J, Czapla T, Schwab G, Jayne S, Stockhoff BA, Narva K, Schnepf HE, Stelman SJ, Poutre C, Koziel M, Duck N (2001) Insecticidal proteins from Bacillus thuringiensis protect corn from corn rootworms. Nat Biotechnol 19:668–672CrossRefPubMedGoogle Scholar
  27. Morawo T, Fadamiro H (2014) Duration of plant damage by host larvae affects attraction of two parasitoid species (Microplitis croceipes and Cotesia marginiventris) to cotton: implications for interspecific competition. J Chem Ecol 40:1176–1185CrossRefPubMedGoogle Scholar
  28. Noumavo PA, Kochoni E, Didagbé YO, Adjanohoun A, Allagbé M, Sikirou R, Gachomo EW, Kotchoni SO, Baba-Moussa L (2013) Effect of different plant growth promoting rhizobacteria on maize seed germination and seedling development. Am J Plant Sci 04:1013–1021. doi: 10.4236/ajps.2013.45125 CrossRefGoogle Scholar
  29. Pangesti N, Pineda A, Dicke M, van Loon JJ (2015) Variation in plant-mediated interactions between rhizobacteria and caterpillars: potential role of soil composition. Plant Biol. 17(2):474–483CrossRefPubMedGoogle Scholar
  30. Parimi S, Meinke LJ, French BW, Chandler LD, Siegfried BD (2006) Stability and persistence of aldrin and methyl-parathion resistance in western corn rootworm populations (Coleoptera: Chrysomelidae). Crop Prot 25:269–274CrossRefGoogle Scholar
  31. Parra-Cota FI, Peña-Cabriales JJ, de Los Santos-Villalobos S, Martínez-Gallardo NA, Délano-Frier JP (2014) Burkholderia ambifaria and B. caribensis promote growth and increase yield in grain amaranth (Amaranthus cruentus and A. hypochondriacus) by improving plant nitrogen uptake. PLoS ONE 9:e88094CrossRefPubMedPubMedCentralGoogle Scholar
  32. Pineda A, Zheng SJ, van Loon JJA, Dicke M (2012) Rhizobacteria modify plant-aphid interactions: a case of induced systemic susceptibility. Plant Biol 14(suppl. 1):83–90CrossRefPubMedGoogle Scholar
  33. Raupach GS, Kloepper JW (1998) Mixtures of plant growth-promoting rhizobacteria enhance biological control of multiple cucumber pathogens. Phytopathology 88(11):1158–1164CrossRefPubMedGoogle Scholar
  34. Requena BYN, Jimenez I, Toro M, Barea JM (1997) Interactions between plant-growth- promoting rhizobacteria (PGPR), arbuscular mycorrhizal fungi and Rhizobium spp in the rhizosphere of Anthyllis cytisoides, a model legume for revegetation in mediterranean semi-arid ecosystems. New Phytol 136:667–677CrossRefGoogle Scholar
  35. Robert CAM, Erb M, Duployer M, Zwahlen C, Doyen GR, Turlings TCJ (2012a) Herbivore-induced plant volatiles mediate host selection by a root herbivore. New Phytol 194:1061–1069CrossRefPubMedGoogle Scholar
  36. Robert CAM, Veyrat N, Glauser G, Guillaume M, Doyen GR, Villard N, Gaillard MDP, Kollner TG, Giron D, Body M, Babst BA, Ferrieri RA, Turlings TCJ, Erb M (2012b) A specialist root herbivore exploits defensive metabolites to locate nutritious tissues. Ecol Lett 15:55–64CrossRefPubMedGoogle Scholar
  37. Ryu CM, Murphy JF, Reddy MS, Kloepper JW (2007) A two-strain mixture of rhizobacteria elicits induction of systemic resistance against Pseudomonas syringae and Cucumber Mosaic Virus coupled to promotion of plant growth on Arabidopsis thaliana. J Microbiol Biotechnol 17:280–286PubMedGoogle Scholar
  38. Sandheep AR, Asok AK, Jisha MS (2013) Combined inoculation of Pseudomonas flourescens and Trichoderma harzianum for enhancing plant growth of Vanilla (Vanilla planifolia). Pak J Biol Sci 16(12):580–584CrossRefPubMedGoogle Scholar
  39. Santos F, Peñaflor MFGV, Paré PW, Sanches PA, Kamiya AC, Tonelli M, Nardi C, Bento JMS (2014) A novel interaction between plant-beneficial rhizobacteria and roots: colonization induces corn resistance against the root herbivore Diabrotica speciosa. PLoS ONE 9:e113280. doi: 10.1371/journal.pone.0113280 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Saravanakumar D, Lavanya N, Muthumeena B, Raguchander T, Suresh S, Samiyappan R (2008) Pseudomonas fluorescens enhances resistance and natural enemy population in rice plants against leaffolder pest. J Appl Entomol 132:469–479CrossRefGoogle Scholar
  41. Shavit R, Ofek-Lalzar M, Burdman S, Morin S (2013) Inoculation of tomato plants with rhizobacteria enhances the performance of the phloem-feeding insect Bemisia tabaci. Front Plant Sci 4:306. doi: 10.3389/fpls.2013.00306 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Urías-lópez MA, Meinke LJ (2001) Influence of western corn rootworm (Coleoptera: Chrysomelidae) larval injury on yield of different types of maize. J Econ Entomol 94(1):106–111CrossRefPubMedGoogle Scholar
  43. Van der Ent S, Van Hulten M, Pozo MJ, Czechowski T, Udvardi MK, Pieterse CMJ, Ton J (2009) Priming of plant innate immunity by rhizobacteria and beta-aminobutyric acid: differences and similarities in regulation. New Phytol 183:419–431. doi: 10.1111/j.1469-8137.2009.02851.x CrossRefPubMedGoogle Scholar
  44. Van Oosten VR, Bodenhausen N, Reymond P, Van Pelt JA, Van Loon LC, Dicke M, Pieterse CMJ (2008) Differential effectiveness of microbially induced resistance against herbivorous insects in Arabidopsis. Mol Plant Microbe Interact 21:919–930. doi: 10.1094/MPMI-21-7-0919 CrossRefPubMedGoogle Scholar
  45. Vannette RL, Rasmann S (2012) Arbuscular mycorrhizal fungi mediate below-ground plant-herbivore interactions: a phylogenetic study. Funct Ecol 26:1033–1042CrossRefGoogle Scholar
  46. Vaughn T, Cavato T, Brar G, Coombe T, DeGooyer T, Ford S, Groth M, Howe A, Johnson S, Kolacz K, Pilcher C, Purcell J, Romano C, English L, Pershing J (2005) A method of controlling corn rootworm feeding using a Bacillus thuringiensis protein expressed in transgenic maize. Crop Sci 45:931–938CrossRefGoogle Scholar
  47. Yadav J, Verma JP (2014) Effect of seed inoculation with indigenous Rhizobium and plant growth promoting rhizobacteria on nutrients uptake and yields of chickpea (Cicer arietinum L.). Eur J Soil Biol 63:70–77CrossRefGoogle Scholar
  48. Zebelo S, Song Y, Kloepper JW, Fadamiro H (2016) Rhizobacteria activates (+)- δ -cadinene synthase genes and induces systemic resistance in cotton against beet armyworm (Spodoptera exigua). Plant Cell Environ. doi: 10.1111/pce.12704 PubMedGoogle Scholar
  49. Zehnder G, Kloepper J, Tuzun S, Yao C, Wei G, Chambliss O, Shelby, R (1997) Insect feeding on cucumber mediated by rhizobacteria-induced plant resistance. Entomol Exp Appl 83(1):81–85Google Scholar
  50. Zhang S, White TL, Martinez MC, Mcinroy JA, Kloepper JW, Klassen W (2010) Evaluation of plant growth-promoting rhizobacteria for control of Phytophthora blight on squash under greenhouse conditions. Biol Control 53:129–135CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Joseph O. Disi
    • 1
  • Joseph W. Kloepper
    • 1
  • Henry Y. Fadamiro
    • 1
  1. 1.Department of Entomology and Plant PathologyAuburn UniversityAuburnUSA

Personalised recommendations