Skip to main content
Log in

Effect of plant secondary metabolites on legume pod borer, Helicoverpa armigera

  • Original Paper
  • Published:
Journal of Pest Science Aims and scope Submit manuscript

Abstract

The effect of various flavonoids, lectins and phenyl β-d-glucoside on larval survival, weights and the activities of digestive (total serine protease and trypsin) and detoxifying [esterase and glutathione-S-transferase] enzymes of Helicoverpa armigera larvae at 5 and 10 days after treatment (DAT) was studied through diet incorporation assay. Flavonoids (quercetin, cinnamic acid, caffeic acid, chlorogenic acid, catechin, trihydroxyflavone, gentisic acid, ferulic acid, protocatechuic acid and umbelliferone) were incorporated in artificial diet at 100, 500 and 1000 ppm, lectins: groundnut leaf lectin (GLL), concavalin (ConA) and phenyl β-d-glucoside at 2.5 and 5 μg mL−1. Flavonoids such as chlorogenic acid, caffeic acid and protocatechuic acid at 1,000 ppm were more toxic to H. armigera larvae at 10 DAT than quercetin, catechin, cinnamic acid, trihydroxyflavone, gentisic acid, ferulic acid and umbelliferone. Larval growth and development were significantly reduced in H. armigera larvae fed on a diet with GLL and ConA at 5 μg mL−1 compared to the larvae fed at 2.5 and 1.25 μg mL−1 concentrations. The enzyme activities of the larvae were significantly reduced in flavonoid-treated diets. The flavonoids such as chlorogenic acid, caffeic acid, gentisic acid, trihydroxyflavone, catechin and protocatechuic acid, and lectins, GLL and ConA can be utilized in insect control programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arora A, Sharma HC, Dhillon MK, Chakraborty D, Das S, Romeis J (2004) Impact of Allium sativum leaf lectin on the Helicoverpa armigera larval parasitoid Campoletis chlorideae. SAT ejournal 3(1):41–43

  • Atteyat M, Abu-Romann S, Abu-Darwish M, Ghabeish I (2012) Impact of flavonoids against woolly apple aphid, Eriosoma lanigerum (Hausmann) and its sole parasitoid, Aphelinus mali (Hald.). J Agric Sci 4:227–236

    Google Scholar 

  • Ballhorn DJ, Kautz S, Jensen M, Schmitt I, Heil M, Hegeman AD (2011) Genetic and environmental interactions determine plant defenses against herbivores. Ecology 99:313–326

    Article  Google Scholar 

  • Barakat A, Bagniewska-Zadworna A, Frost CJ, Carlson JE (2010) Phylogeny and expression profiling of CAD and CAD-like genes in hybrid Populus (P. deltoides × P. nigra): evidence from herbivore damage for subfunctionalization and functional divergence. BMC Plant Biol 10:100

    Article  PubMed  Google Scholar 

  • Beninger CW, Abou-Zaid MM, Kistner ALE, Hallett RH, Iqbal MJ, Grodzinski B, Hall JC (2004) A flavanone and two phenolic acids from Chrysanthemum morifolium with phytotoxic and insect growth regulating activity. J Chem Ecol 30:589–606

    Article  PubMed  CAS  Google Scholar 

  • Boeckler GA, Gershenzon J, Unsicker SB (2011) Phenolic glycosides of the Salicaceae and their role as anti-herbivore defenses. Phytochemistry 72:1497–1509

    Article  PubMed  CAS  Google Scholar 

  • Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546

    Article  PubMed  CAS  Google Scholar 

  • Bryant JP, Clausen TP, Reichardt PB, McCarthy MC, Werner RA (1987) Effect of nitrogen fertilization upon the secondary chemistry and nutritional value of quaking aspen (Populus tremuloides Michx.) leaves for the large aspen tortrix (Choristoneura conflictana ([Walker]). Oecologia 73:513–517

    Article  Google Scholar 

  • Chakraborti D, Sarkar A, Mondal HA, Das S (2009) Tissue specific expression of potent insecticidal, Allium sativum leaf agglutinin (ASAL) in important pulse crop, chickpea (Cicer arietinum L.) to resist the phloem feeding Aphis craccivora. Transgenic Res 18:529–544. doi:10.1007/s11248-009-9242-7

    PubMed  Google Scholar 

  • Czapla TH, Lang BA (1990) Effect of plant lectins on the larval development of European corn borer (Lepidoptera: Pyralidae) and southern corn rootworm Coleoptera: Chrysomelidae). J Econ Entomol 83:2480–2485

    Google Scholar 

  • Felton GW, Duffey SS (1990) Inactivation of baculovirus by quinones formed in insect damaged plant-tissues. J Chem Ecol 16:1221–1236

    Article  CAS  Google Scholar 

  • Felton GW, Donato KK, Broadway RM, Duffey SS (1992) Impact of oxidized plant phenolics on the nutritional quality of dietary-protein to a noctuid herbivore, Spodoptera exigua. J Insect Physiol 38:277–285

    Article  CAS  Google Scholar 

  • Gatehouse AMR, Davison GM, Stewart JN, Gatehouse LN, Kumar A, Geoghegan IE, Birch ANE, Gatehouse JA (1999) Concanavalin A inhibits development of tomato moth (Lacanobia oleracea) and peach-potato aphid (Myzus persicae) when expressed in transgenic potato plants. Mol Breeding 5:153–165

    Article  CAS  Google Scholar 

  • Grayer RJ, Kimmins FM, Padgham DE, Harborne JB, Ranga Rao DV (1992) Condensed tannin levels and resistance in groundnuts (Arachis hypogoea L.) against Aphis craccivora (Koch). Phytochemistry 31:3795–3799

    Article  CAS  Google Scholar 

  • Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione-S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139

    PubMed  CAS  Google Scholar 

  • He J, Chen F, Chen S, Lv G, Deng Y, Fang Z, Guan Z, He C (2011) Chrysanthemum leaf epidermal surface morphology and antioxidant and defense enzyme activity in response to aphid infestation. J Plant Physiol 168:687–693

    Article  PubMed  CAS  Google Scholar 

  • Hegedus D, Baldwin D, O’Grady M, Braun L, Gleddie S, Sharpe A, Lydiate D, Erlandson M (2003) Midgut proteases from Mamestra configurata (Lepidoptera: Noctuidae) larvae: characterization, cDNA cloning, and expressed sequence tag analysis. Arch Insect Biochem Physiol 53:30–47

    Article  PubMed  CAS  Google Scholar 

  • Heil M (2008) Indirect defence via tritrophic interactions. New Phytol 178:41–61

    Article  PubMed  CAS  Google Scholar 

  • Ikonen A, Tahvanainen J, Roininen H (2002) Phenolic secondary compounds as determinants of the host plant preferences of the leaf beetle Agelastica alni. Chemoecology 12:125–131

    Article  CAS  Google Scholar 

  • Isman MB, Duffey SS (1982) Toxicity of tomato phenolic compounds to the fruitworm, Heliothis zea. Entomol Exp Appl 31:370–376

    Article  CAS  Google Scholar 

  • Jassbi AR (2003) Secondary metabolites as stimulants and antifeedants of Salix integra for the leaf beetle Plagiodera versicolora. Zeitschrift Fur Natur C 58:573–579

    CAS  Google Scholar 

  • Karban R, Baldwin IT (1997) Induced responses to herbivory. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Krishnan N, Kodrík D (2006) Antioxidant enzymes in Spodoptera littoralis (Boisduval): are they enhanced to protect gut tissues during oxidative stress? J Insect Physiol 52:11–20

    Article  PubMed  CAS  Google Scholar 

  • Lannoo N, Peumans WJ, Van Damme EJM (2006) The presence of jasmonate-inducible lectin genes in some but not all Nicotiana species explains a marked intragenus difference in plant responses to hormone treatment. J Exp Bot 57:3145–3155

    Article  PubMed  CAS  Google Scholar 

  • Maffei ME, Mithofer A, Boland W (2007) Insects feeding on plants: rapid signals and responses preceding the induction of photochemical release. Phytochemistry 68:2946–2959

    Article  PubMed  CAS  Google Scholar 

  • Mallikarjuna N, Kranthi KR, Jadhav DR, Kranthi S, Chandra S (2004) Influence of foliar chemical compounds on the development of Spodoptera litura (Fab.) in interspecific derivatives of groundnut. J Appl Entomol 128:321–328

    Article  CAS  Google Scholar 

  • Morimoto M, Kumeda S, Komai K (2000) Insect antifeedant flavonoids from Gnaphalium affine D. Don. J Agric Food Chem 48:1888–1891

    Article  PubMed  CAS  Google Scholar 

  • Murdock LL, Huesing JA, Nielsen SS, Pratt RC, Shade RE (1990) Biological effects of plant lectins on the cowpea weevil. Phytochemistry 29:85–89

    Article  CAS  Google Scholar 

  • Narayanamma LV, Sharma HC, Gowda CLL, Sriramulu M (2008) Incorporation of lyophilized leaves and pods into artificial diets to assess the antibiosis component of resistance to pod borer, Helicoverpa armigera (Lepidoptera: Noctuidae) in chickpea. Int J Tropical Insect Sci 27:191–198

    Article  Google Scholar 

  • Onyilagha JC, Lazorko J, Gruber MY, Soroka JJ, Erlandson MA (2004) Effect of flavonoids on feeding preference and development of the crucifer pest Mamestra configurata Walker. J Chem Ecol 30:109–124

    Article  PubMed  CAS  Google Scholar 

  • Perlmann G, Lorand L (eds) (1970) Proteolytic enzymes, 2nd edn, vol 19. Methods in enzymology. Academic Press, New York, pp 770–782

  • Peumans WJ, Vandamme EJM (1995) Lectins as plant defense proteins. Plant Physiol 109:347–352

    Article  PubMed  CAS  Google Scholar 

  • Saha P, Majumder P, Dutta I, Ray T, Roy SC, Das S (2006) Transgenic rice expressing Allium sativum leaf lectin with enhanced resistance against sap-sucking insect pests. Planta 223:1329–1343

    Article  PubMed  CAS  Google Scholar 

  • Salvador MC, Boica AL Jr, de Oliveira MCN, da Graca JP, da Silva DM, Hoffman-Campo CB (2010) Do different casein concentrations increase the adverse effect of rutin on the biology of Anticarsia gemmatalis Hübner (Lepidoptera: Noctuidae)? Neotropical Entomol 39:774–783

    Article  CAS  Google Scholar 

  • Sharma HC, Norris DM (1991) Chemical basis of resistance in soya bean to cabbage looper, Trichoplusia ni. J Sci Food Agric 55:353–364

    Article  CAS  Google Scholar 

  • Sharma HC, Pampathy G, Dhillon MK, Ridsdill-Smith JT (2005) Detached leaf assay to screen for host plant resistance to Helicoverpa armigera. J Econ Entomol 98(2):568–576

    Article  PubMed  Google Scholar 

  • Sharma HC, Sujana G, Rao DM (2009) Morphological and chemical components of resistance to pod borer, Helicoverpa armigera in wild relatives of pigeonpea. Arthropod–Plant Interact 3(3):151–161

    Article  Google Scholar 

  • Shukla S, Arora R, Sharma HC (2005) Biological activity of soybean trypsin inhibitor and plant lectins against cotton bollworm/legume pod borer, Helicoverpa armigera. Plant Biotech 22:1–6

    Google Scholar 

  • Simmonds MSJ (2003) Flavonoid–insect interactions: recent advances in our knowledge. Phytochemistry 64:21–30

    Article  PubMed  CAS  Google Scholar 

  • Simmonds MSJ, Stevenson PC (2001) Effects of isoflavonoids from Cicer on larvae of Heliocoverpa armigera. J Chem Ecol 27:965–977

    Article  PubMed  CAS  Google Scholar 

  • Stevenson PC, Blaney WL, Simmonds MSJ, Wightman JA (1993) The identification and characterization of resistance in wild species of Arachis to Spodoptera litura (Lepidoptera: Noctuidae). Bull Entomol Res 83:421–429

    Article  Google Scholar 

  • Summers CB, Felton GW (1994) Prooxidant effects of phenolic acids on the generalist herbivore Helicoverpa zea (Lepidoptera: Noctuidae): potential mode of action for phenolic compounds in plant anti-herbivore chemistry. Insect Biochem Mol Biol 24:943–953

    Article  CAS  Google Scholar 

  • Treutter D (2006) Significance of flavonoids in plant resistance: a review. Environ Chem Lett 4:147–157

    Article  CAS  Google Scholar 

  • Usha Rani P, Jyothsna Y (2010) Biochemical and enzymatic changes in rice as a mechanism of defense. Acta Physiol Plant 32:695–701

    Article  Google Scholar 

  • Van Damme EJM, Lannoo N, Fouquaert E, Peumans WJ (2003) The identification of inducible cytoplasmic/nuclear carbohydrate-binding proteins urges to develop novel concepts about the role of plant lectins. Glycoconj J 20:449–460

    Article  Google Scholar 

  • van Loon JJA, Wang CZ, Nielsen JK, Gols R, Qiu YT (2002) Flavonoids from cabbage are feeding stimulants for diamondback moth larvae additional to glucosinolates: chemoreception and behavior. Entomol Exp Appl 104:27–34

    Article  Google Scholar 

  • Vandenborre G, Smagghe G, Van Damme EJM (2011) Plant lectins as defense proteins against phytophagous insects. Phytochemistry. doi:10.1016/j.phytochem.2011.02.024

    PubMed  Google Scholar 

  • Vanhaelen N, Haubruge E, Lognay G, Francis F (2003) Hoverfly glutathione S-transferases and effect of Brassicaceae secondary metabolites. Pest Biochem Physiol 71:170–177

    Article  Google Scholar 

  • War AR, Paulraj MG, Ignacimuthu S, Sharma HC (2012) Defensive responses in groundnut against chewing and sap sucking insects. J Plant Growth Regul. doi: 10.1007/s00344-012-9294-4

  • Zagrobelny M, Bak S, Rasmussen AV, Jorgensen B, Naumann CM, Moller BL (2004) Cyanogenic glucosides and plant–insect interactions. Phytochemistry 65:293–306

    Article  PubMed  CAS  Google Scholar 

  • Zhu-Salzman K, Shade RE, Koiwa H, Salzman RA, Narasimhan M, Bressan RA, Hasegawa PM, Murdock LL (1998) Carbohydrate binding and resistance to proteolysis control insecticidal activity of Griffonia simplicifolia lectin II. Proc Natl Acad Sci USA 95:15123–15128

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are thankful to entomology staff at ICRISAT especially, Mr. Rajendra S. Munghate, Mr. Suraj P. Shrama and Mr. VV Rao for their help in carrying out the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hari Chand Sharma.

Additional information

Communicated by J. Gross.

Rights and permissions

Reprints and permissions

About this article

Cite this article

War, A.R., Paulraj, M.G., Hussain, B. et al. Effect of plant secondary metabolites on legume pod borer, Helicoverpa armigera . J Pest Sci 86, 399–408 (2013). https://doi.org/10.1007/s10340-013-0485-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10340-013-0485-y

Keywords

Navigation