Orientation-Dependent Morphology and Evolution of Interfacial Dislocation Networks in Ni-Based Single-Crystal Superalloys: A Molecular Dynamics Simulation


In this paper, the morphology and evolution of interfacial dislocation networks of (100), (110) and (111) interphases of Ni-based single-crystal superalloys are studied by molecular dynamics (MD) simulations. Three-dimensional cubic-type and sandwich-type models are chosen to explore the orientation-dependent morphology of dislocation networks, and their respective advantages and disadvantages are compared. From the simulations, it is observed that various lattice orientations and model types lead to different morphologies of dislocation networks. Based on the analysis of average atomic energy and dislocation characteristics, the (100) orientation model has a more regular dislocation network, lower energy and better stability than the (110) and (111) orientation models after MD relaxation, which are supported by previous experimental and numerical simulations. Moreover, the cubic-type model has lower energy and better stability than the sandwich-type model. This will be helpful for choosing a more appropriate and reasonable model for simulating the interfacial dislocation networks of Ni-based single-crystal superalloys.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. 1.

    Pollock TM, Tin S. Nickel-based superalloys for advanced turbine engines chemistry, microstructure, and properties. J Propul Power. 2006;22(2):361–74.

    Google Scholar 

  2. 2.

    Xie HX, Wang CY, Yu T. Motion of misfit dislocation in an Ni/Ni\(_{3}\)Al interface: a molecular dynamics simulations study. Model Simul Mater Sci Eng. 2009;17(5):055007.

    Google Scholar 

  3. 3.

    Naeem M, Singh R, Probert D. Implications of engine deterioration for a high-pressure turbine blade’s low-cycle fatigue (LCF) life-consumption. Int J Fatigue. 1999;21(8):831–47.

    Google Scholar 

  4. 4.

    le Graverend JB, Cormier J, Gallerneau F, Villechaise P, Kruch S, Mendez J. A microstructure-sensitive constitutive modeling of the inelastic behavior of single crystal Nickel-based superalloys at very high temperature. Int J Plast. 2014;59:55–83.

    Google Scholar 

  5. 5.

    Sokolov J, Jona F. Trends in metal surface relaxation. Solid State Commun. 1984;49(4):307–12.

    Google Scholar 

  6. 6.

    Zhu T, Wang CY. Molecular dynamics study of mosaic structure in the Ni-based single-crystal superalloy. Chin Phys B. 2006;15(9):2087–91.

    Google Scholar 

  7. 7.

    Zhang JX, Wang JC, Harada H, Koizumi Y. The effect of lattice misfit on the dislocation motion in superalloys during high-temperature low-stress creep. Acta Mater. 2005;53(17):4623–33.

    Google Scholar 

  8. 8.

    Ma L, Xiao SF, Deng HQ, Hu WY. Tensile mechanical properties of Ni-based superalloy of nanophases using molecular dynamics simulation. Phys Status Solidi B. 2016;253(4):726–32.

    Google Scholar 

  9. 9.

    Kraft S, Altenberger I, Mughrabi H. Directional \(\gamma -\gamma ^\prime \) coarsening in a monocrystalline Nickel-based superalloy during low-cycle thermomechanical fatigue. Scr Metall Mater. 1995;32(3):411–6.

    Google Scholar 

  10. 10.

    Wu WP, Guo YF, Wang YS, Mueller R, Gross D. Molecular dynamics simulation of the structural evolution of misfit dislocation networks at \(\gamma \)/\(\gamma ^\prime \) phase interfaces in Ni-based superalloys. Philos Mag. 2011;91(3):357–72.

    Google Scholar 

  11. 11.

    Zhang JX, Murakumo T, Harada H, Koizumi Y. Dependence of creep strength on the interfacial dislocations in a fourth generation SC superalloy TMS-138. Scr Mater. 2003;48(3):287–93.

    Google Scholar 

  12. 12.

    Tian SG, Zhou HH, Zhang JH, Yang HC, Xu YB, Hu ZQ. Formation and role of dislocation networks during high temperature creep of a single crystal Nickel-base superalloy. Mater Sci Eng A. 2000;A279(1–2):160–5.

    Google Scholar 

  13. 13.

    Liu L, Meng J, Liu JL, Jin T, Sun XD, Zhang HF. Effects of crystal orientations on the cyclic deformation behavior in the low cycle fatigue of a single crystal Nickel-base superalloy. Mater Des. 2017;131:441–9.

    Google Scholar 

  14. 14.

    Yu J, Li JR, Zhao JQ, Han M, Shi ZX, Liu SZ, Yuan HL. Orientation dependence of creep properties and deformation mechanism in DD6 single crystal superalloy at \(760\,^{\circ }\text{ C }\) and 785 MPa. Mater Sci Eng A. 2013;560:47–53.

    Google Scholar 

  15. 15.

    Wang LN, Liu Y, Yu JJ, Xu Y, Sun XF, Guan HR, Hu ZQ. Orientation and temperature dependence of yielding and deformation behavior of a Nickel-base single crystal superalloy. Mater Sci Eng A. 2009;505(1–2):144–50.

    Google Scholar 

  16. 16.

    Li P, Zhou BM, Zhou YZ, Zhang ZF. Effect of orientation on low-cycle fatigue behaviour of single crystal superalloys at \(900\,^{\circ } \text{ C }\). Mater Sci Technol. 2019;35(7):767–74.

    Google Scholar 

  17. 17.

    Sass V, Feller-Kniepmeier M. Orientation dependence of dislocation structures and deformation mechanisms in creep deformed CMSX-4 single crystals. Mater Sci Eng A. 1998;245(1):19–28.

    Google Scholar 

  18. 18.

    Xiong J, Zhu YX, Li ZH, Huang M. Quantitative study on interactions between interfacial misfit dislocation networks and matrix dislocations in Ni-based single crystal superalloys. Acta Mech Solida Sin. 2017;30(4):345–53.

    Google Scholar 

  19. 19.

    Zhu YX, Li ZH, Huang MS. Atomistic modeling of the interaction between matrix dislocation and interfacial misfit dislocation networks in Ni-based single crystal superalloy. Comput Mater Sci. 2013;70:178–86.

    Google Scholar 

  20. 20.

    Yu JG, Zhang QX, Yue ZF, Liu R, Tang MK, Li XW. Microstructure evolution and mechanical behavior of the Ni/Ni\(_{3}\)Al interface under thermal–mechanical coupling. Mater Express. 2015;5(4):343–50.

    Google Scholar 

  21. 21.

    Zhu T, Wang CY. Misfit dislocation networks in the \(\gamma \)/\(\gamma ^\prime \) phase interface of a Ni-based single-crystal superalloy: molecular dynamics simulations. Phys Rev B. 2005;72(1):4111.

    MathSciNet  Google Scholar 

  22. 22.

    Li YL, Wu WP, Ruan ZG. Molecular dynamics simulation of the evolution of interfacial dislocation network and stress distribution of a Ni-based single-crystal superalloy. Acta Metall Sin (Engl Lett). 2016;29(7):689–96.

    Google Scholar 

  23. 23.

    Li NL, Wu WP, Nie K. Molecular dynamics study on the evolution of interfacial dislocation network and mechanical properties of Ni-based single crystal superalloys. Phys Lett A. 2018;382(20):1361–7.

    Google Scholar 

  24. 24.

    Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys. 1995;117:1–19.

    MATH  Google Scholar 

  25. 25.

    Purja Pun GP, Mishin Y. Development of an interatomic potential for the Ni–Al system. Philos Mag. 2009;89(34–36):3245–67.

    Google Scholar 

  26. 26.

    Stukowski A, Bulatov VV, Arsenlis A. Automated identification and indexing of dislocations in crystal interfaces. Model Simul Mater Sci Eng. 2012;20(8):085007.

    Google Scholar 

  27. 27.

    Faken D, Jónsson H. Systematic analysis of local atomic structure combined with 3D computer graphics. Comput Mater Sci. 1994;2(2):279–86.

    Google Scholar 

  28. 28.

    Stukowski A. Structure identification methods for atomistic simulations of crystalline materials. Model Simul Mater Sci Eng. 2012;20(4):045021.

    Google Scholar 

  29. 29.

    Zhang JX, Murakumo T, Koizumi Y, Kobayashi T, Harada H, Masaki S. Interfacial dislocation networks strengthening a fourth-generation single-crystal TMS-138 superalloy. Metall Mater Trans A. 2002;33(12):3741–6.

    Google Scholar 

  30. 30.

    Wu WP, Guo YF, Wang YS. Influence of stress state on the evolution of misfit dislocation networks in a Ni-based single crystal superalloy. Philos Mag. 2012;92(12):1456–68.

    Google Scholar 

  31. 31.

    Wu WP, Guo YF, Wang YS, Xu S. Evolution of interphase misfit dislocation networks in Ni-based single crystal superalloy under shear loading. Acta Phys Sin Chin Ed. 2011;60(5):680–91.

    Google Scholar 

Download references


The work was supported by the National Natural Science Foundation of China (Grant Nos. 11772236, 11472195 and 11711530643).

Author information



Corresponding author

Correspondence to Wen-Ping Wu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, B., Wu, WP. & Chen, MX. Orientation-Dependent Morphology and Evolution of Interfacial Dislocation Networks in Ni-Based Single-Crystal Superalloys: A Molecular Dynamics Simulation. Acta Mech. Solida Sin. 34, 79–90 (2021). https://doi.org/10.1007/s10338-020-00172-1

Download citation


  • Ni-based single-crystal superalloys
  • Molecular dynamics simulation
  • Orientation
  • Interfacial dislocation networks