Two-Dimensional Coupling Vibration Analysis of Laterally Acoustically Coupled Two-Port Thin-Film Bulk Acoustic Resonators

Abstract

In this paper, we present an approach to studying the mode coupling vibrations in two-port thin-film bulk acoustic wave resonator (FBAR) devices with two pairs of electrodes deposited on the zinc oxide film. The two-dimensional plate theory established in our previous work is employed, which takes into account the coupling of the operating thickness-extensional mode with the extensional, flexural, fundamental and second-order thickness-shear modes. The propagation of straight-crested waves in the plate is studied, and the state-vector approach is successfully used to simplify the derivation process. For a structurally symmetric device, the modes are separated into quasi symmetric and antisymmetric ones. Frequency spectra and corresponding mode shapes are obtained under the stress-free boundary conditions, respectively, and then coupling effects and energy trapping phenomenon are discussed in detail. Some results for structures with asymmetric electrode distributions are also shown. It is found that the choice of aspect ratio has a great effect on mode couplings of FBAR devices. This study will be useful for the design of FBAR filters and sensors.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    Lee PCY, Yu JD, Lin WS. A new two-dimensional theory for vibrations of piezoelectric crystal plates with electroded faces. J Appl Phys. 1998;83(3):1213–23.

    Article  Google Scholar 

  2. 2.

    Beaver WD. Analysis of elastically coupled piezoelectric resonators. J Acoust Soc Am. 1968;43(5):972–81.

    Article  Google Scholar 

  3. 3.

    Li N, Qian Z, Yang J. Effects of nonlinearity on transient processes in AT-cut quartz thickness-shear resonators. Acta Mech Solida Sin. 2015;28(4):347–52.

    Article  Google Scholar 

  4. 4.

    He H, Nie G, Liu J, et al. Energy trapping of thickness-shear and thickness-twist modes in a partially electroded AT-cut quartz resonator. Acta Mech Solida Sin. 2012;25(6):579–85.

    Article  Google Scholar 

  5. 5.

    Iriarte GF, Engelmark F, Katardjiev IV. Reactive sputter deposition of highly oriented AlN films at room temperature. J Mater Res. 2002;17(6):1469–75.

    Article  Google Scholar 

  6. 6.

    Martin F, Jan ME, ReyMermet S, et al. Shear mode coupling and tilted grain growth of AlN thin films in BAW resonators. IEEE Trans Ultrason Ferroelectr Freq Control. 2006;53(7):1339–43.

    Article  Google Scholar 

  7. 7.

    Satoh Y, Nishihara T, Yokoyama T, et al. Development of piezoelectric thin film resonator and its impact on future wireless communication systems. Jpn J Appl Phys. 2005;44(5A):2883–94.

    Article  Google Scholar 

  8. 8.

    Ruby RC, Bradley P, Oshmyansky Y, et al. Thin film bulk wave acoustic resonators (FBAR) for wireless applications. In: IEEE ultrasonics symposium 2001 (vol. 1, p. 813–821).

  9. 9.

    Gabl R, Green E, Schreiter M, et al. Novel Integrated FBAR sensors: a universal technology platform for bio- and gas-detection. In: Sensors Proceedings of IEEE. 2003 (vol. 2 no. 2, p. 1184–8).

  10. 10.

    Tukkiniemi K, Rantala A, Nirschl M, et al. Fully integrated FBAR sensor matrix for mass detection. Procedia Chem. 2009;1(1):1051–4.

    Article  Google Scholar 

  11. 11.

    Fu YQ, Luo JK, Du XY, et al. Recent developments on ZnO films for acoustic wave based bio-sensing and microfluidic applications: a review. Sens Actuators B Chem. 2010;143(2):606–19.

    Article  Google Scholar 

  12. 12.

    Kim EK, Lee TY, Jeong YH, et al. Air gap type thin film bulk acoustic resonator fabrication using simplified process. Thin Solid Films. 2006;496(2):653–7.

    Article  Google Scholar 

  13. 13.

    Ueda M, Hara M, Taniguchi S, Yokoyama T, Nishihara T, Hashimoto K, Satoh Y. Development of an X-band filter using air-gap-type film bulk acoustic resonators. Jpn J Appl Phys. 2008;47(5S):4007–10.

    Article  Google Scholar 

  14. 14.

    Link M, Schreiter M, Weber J, Primig R, Pitzer D, Gabl R. Solidly mounted ZnO shear mode film bulk acoustic resonators for sensing applications in liquids. IEEE Trans Ultrason Ferroelectr Freq Control. 2006;53(2):492–6.

    Article  Google Scholar 

  15. 15.

    Lin RC, Chen YC, Chang WT, et al. Highly sensitive mass sensor using film bulk acoustic resonator. Sens Actuators A Phys. 2008;147(2):425–9.

    Article  Google Scholar 

  16. 16.

    Larson JD, et al. Modified Butterworth-Van Dyke circuit for FBAR resonators and automated measurement system. In: Ultrasonics Symposium. 2000 (vol. 1, p. 863–8).

  17. 17.

    Tiersten HF, Stevens DS. An analysis of thickness-extensional trapped energy resonant device structures with rectangular electrodes in the piezoelectric thin film on silicon configuration. J Appl Phys. 1983;54(10):5893–910.

    Article  Google Scholar 

  18. 18.

    Zhao Z, Qian Z, Wang B. Energy trapping of thickness-extensional modes in thin film bulk acoustic wave filters. AIP Adv. 2016;6(1):993–5.

    Google Scholar 

  19. 19.

    Li N, Qian Z, Yang J. Two-dimensional equations for piezoelectric thin-film acoustic wave resonators. Int J Solids Struct. 2017;110:170–7.

    Article  Google Scholar 

  20. 20.

    Li N, Qian Z, Yang J. Effects of aspect ratio on the mode couplings of thin-film bulk acoustic wave resonators. AIP Adv. 2017;7(5):055113.

    Article  Google Scholar 

  21. 21.

    Li N, Qian Z, Wang B. Forced coupling vibration analysis of FBAR based on two-dimensional equations associated with state-vector approach. AIP Adv. 2018;8(9):095306.

    Article  Google Scholar 

  22. 22.

    Meltaus J, Pensala T, Kokkonen K. Parametric study of laterally acoustically coupled bulk acoustic wave filters. IEEE Trans Ultrason Ferroelectr Freq Control. 2012;59(12):2742–51.

    Article  Google Scholar 

  23. 23.

    Pensala T, Meltaus J, Kokkonen K, et al. 2-D modeling of laterally acoustically coupled thin film bulk acoustic wave resonator filters. IEEE Trans Ultrason Ferroelectr Freq Control. 2010;57(11):2537–49.

    Article  Google Scholar 

  24. 24.

    Zhu F, Zhang Y, Wan B, et al. An elastic electrode model for wave propagation analysis in piezoelectric layered structures of film bulk acoustic resonators. Acta Mech Solida Sin. 2017;30(3):46–53.

    Article  Google Scholar 

  25. 25.

    Shen F, Lee KH, O’Shea SJ, et al. Frequency interference between two quartz crystal microbalances. Sensors. 2003;3(3):274–81.

    Article  Google Scholar 

  26. 26.

    Shen F, Lu P. Influence of interchannel spacing on the dynamical properties of multichannel quartz crystal microbalance. IEEE Trans Ultrason Ferroelectr Freq Control. 2004;51(2):249–53.

    Article  MathSciNet  Google Scholar 

  27. 27.

    Li H, Du H, Xu L, et al. Analysis of multilayered thin-film piezoelectric transducer arrays. IEEE Trans Ultrason Ferroelectr Freq Control. 2009;56(11):2571–7.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the State Key Laboratory of Mechanics and Control of Mechanical Structures at NUAA [Grant No. MCMS-I-0518K02], the National Natural Science Foundation of China [Grant Nos. 11502108, 1611530686] and the Natural Science Foundation of Jiangsu Province [Grant No. BK20140037]. Iren Kuznetsova thanks Russian Foundation Basic Research Grant #18-29-23042 and Russian Ministry of Science and Education for partial financial support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zhenghua Qian.

Appendix A: Expressions for the Constants in Equations of Motion (Eq. (3)) and Constitutive Relations (Eq. (4))

Appendix A: Expressions for the Constants in Equations of Motion (Eq. (3)) and Constitutive Relations (Eq. (4))

$$\begin{aligned} {{\bar{c}}}_{11}^{(0)}= & {} c_{11}^{\left( 0 \right) } +c_{13}^{(1)} \gamma _{3110} +c_{13}^{(2)} \gamma _{3210} ,\;{{\bar{c}}}_{13}^{(0)} =c_{13}^{\left( 0 \right) } +c_{33}^{(1)} \gamma _{3110} +c_{33}^{(2)} \gamma _{3210} \nonumber \\ {{\bar{c}}}_{11}^{(1)}= & {} c_{11}^{\left( 1 \right) } +c_{13}^{(2)} \gamma _{3110} +c_{13}^{(3)} \gamma _{3210} ,\;{{\bar{c}}}_{11}^{(2)} =c_{11}^{\left( 2 \right) } +c_{13}^{(3)} \gamma _{3110} +c_{13}^{(4)} \gamma _{3210} \nonumber \\ {{\bar{e}}}_{31}^{(0)}= & {} e_{31}^{\left( 0 \right) } +e_{33}^{(1)} \gamma _{3110} +e_{33}^{(2)} \gamma _{3210} \end{aligned}$$
(A1)
$$\begin{aligned} {{\bar{c}}}_{31}^{(0)}= & {} c_{13}^{\left( 0 \right) } +c_{13}^{(1)} \gamma _{3130} +c_{13}^{(2)} \gamma _{3230} ,\;{{\bar{c}}}_{33}^{(0)} =c_{33}^{\left( 0 \right) } +c_{33}^{(1)} \gamma _{3130} +c_{33}^{(2)} \gamma _{3230} \nonumber \\ {{\bar{c}}}_{31}^{(1)}= & {} c_{13}^{\left( 1 \right) } +c_{13}^{(2)} \gamma _{3130} +c_{13}^{(3)} \gamma _{3230} ,\;{{\bar{c}}}_{31}^{(2)} =c_{13}^{\left( 2 \right) } +c_{13}^{(3)} \gamma _{3130} +c_{13}^{(4)} \gamma _{3230} \nonumber \\ {{\bar{e}}}_{33}^{(0)}= & {} e_{33}^{\left( 0 \right) } +e_{33}^{(1)} \gamma _{3130} +e_{33}^{(2)} \gamma _{3230} \end{aligned}$$
(A2)
$$\begin{aligned} {{\bar{c}}}_{55}^{(0)}= & {} c_{44}^{\left( 0 \right) } -\frac{c_{44}^{(2)} c_{44}^{\left( 2 \right) } }{c_{44}^{\left( 4 \right) } },\;{{\bar{c}}}_{55}^{(1)} =c_{44}^{\left( 1 \right) } -\frac{c_{44}^{\left( 2 \right) } c_{44}^{(3)} }{c_{44}^{\left( 4 \right) } } \end{aligned}$$
(A3)
$$\begin{aligned} {\tilde{c}}_{11}^{(1)}= & {} c_{11}^{\left( 1 \right) } +c_{13}^{(1)} \gamma _{3111} +c_{13}^{(2)} \gamma _{3211} ,\;{\tilde{c}}_{13}^{(1)} =c_{13}^{\left( 1 \right) } +c_{33}^{(1)} \gamma _{3111} +c_{33}^{(2)} \gamma _{3211} \nonumber \\ {\tilde{c}}_{11}^{(2)}= & {} c_{11}^{\left( 2 \right) } +c_{13}^{(2)} \gamma _{3111} +c_{13}^{(3)} \gamma _{3211} ,\;{\tilde{c}}_{11}^{(3)} =c_{11}^{\left( 3 \right) } +c_{13}^{(3)} \gamma _{3111} +c_{13}^{(4)} \gamma _{3211} \nonumber \\ {\tilde{e}}_{31}^{(1)}= & {} e_{31}^{\left( 1 \right) } +e_{33}^{(1)} \gamma _{3111} +e_{33}^{(2)} \gamma _{3211} \end{aligned}$$
(A4)
$$\begin{aligned} {\tilde{c}}_{55}^{(1)}= & {} c_{44}^{\left( 1 \right) } -\frac{c_{44}^{(2)} c_{44}^{\left( 3 \right) } }{c_{44}^{\left( 4 \right) } },\;{\tilde{c}}_{55}^{(2)} =c_{44}^{\left( 2 \right) } -\frac{c_{44}^{(3)} c_{44}^{\left( 3 \right) } }{c_{44}^{\left( 4 \right) } } \end{aligned}$$
(A5)
$$\begin{aligned} {{\hat{c}}}_{11}^{(2)}= & {} c_{11}^{\left( 2 \right) } +c_{13}^{(1)} \gamma _{3112} +c_{13}^{(2)} \gamma _{3212} ,\;{{\hat{c}}}_{13}^{(2)} =c_{13}^{\left( 2 \right) } +c_{33}^{(1)} \gamma _{3112} +c_{33}^{(2)} \gamma _{3212} \nonumber \\ {{\hat{c}}}_{11}^{(3)}= & {} c_{11}^{\left( 3 \right) } +c_{13}^{(2)} \gamma _{3112} +c_{13}^{(3)} \gamma _{3212} ,\;{{\hat{c}}}_{11}^{(4)} =c_{11}^{\left( 4 \right) } +c_{13}^{(3)} \gamma _{3112} +c_{13}^{(4)} \gamma _{3212} \nonumber \\ {{\hat{e}}}_{31}^{(2)}= & {} e_{31}^{\left( 2 \right) } +e_{33}^{(1)} \gamma _{3112} +e_{33}^{(2)} \gamma _{3212} \end{aligned}$$
(A6)

where \(c_{pq}^{( n )} \), \(e_{kp}^{( n )} \) and \(\rho ^{( n )}\) are the integrals of usual elastic constants, piezoelectric constants and mass density along the thickness of plate, defined by

$$\begin{aligned} c_{pq}^{(n)} =\int _{-h}^{ h} {c_{pq} x_{3}^{n} \hbox {d}x_3 } ,\;e_{kp}^{(n)} =\int _{ -h}^{ h} {e_{kp} x_3^n \hbox {d}x_3 } ,\;\rho ^{(n)}=\int _{-h}^{h} {\rho {}x_3^n \hbox {d}x_3 } \end{aligned}$$
(A7)

and we define

$$\begin{aligned} \gamma _{3110}= & {} \frac{c_{33}^{\left( 3 \right) } c_{13}^{\left( 2 \right) } -c_{33}^{\left( 4 \right) } c_{13}^{\left( 1 \right) } }{c_{33}^{\left( 2 \right) } c_{33}^{\left( 4 \right) } -c_{33}^{\left( 3 \right) } c_{33}^{\left( 3 \right) } },\;\gamma _{3130} =\frac{c_{33}^{\left( 3 \right) } c_{33}^{\left( 2 \right) } -c_{33}^{\left( 4 \right) } c_{33}^{\left( 1 \right) } }{c_{33}^{\left( 2 \right) } c_{33}^{\left( 4 \right) } -c_{33}^{\left( 3 \right) } c_{33}^{\left( 3 \right) } } \nonumber \\ \gamma _{3111}= & {} \frac{c_{33}^{\left( 3 \right) } c_{13}^{\left( 3 \right) } -c_{33}^{\left( 4 \right) } c_{13}^{\left( 2 \right) } }{c_{33}^{\left( 2 \right) } c_{33}^{\left( 4 \right) } -c_{33}^{\left( 3 \right) } c_{33}^{\left( 3 \right) } },\;\gamma _{3112} =\frac{c_{33}^{\left( 3 \right) } c_{13}^{\left( 4 \right) } -c_{33}^{\left( 4 \right) } c_{13}^{\left( 3 \right) } }{c_{33}^{\left( 2 \right) } c_{33}^{\left( 4 \right) } -c_{33}^{\left( 3 \right) } c_{33}^{\left( 3 \right) } } \nonumber \\ \gamma _{3210}= & {} \frac{c_{33}^{\left( 3 \right) } c_{13}^{\left( 1 \right) } -c_{33}^{\left( 2 \right) } c_{13}^{\left( 2 \right) } }{c_{33}^{\left( 2 \right) } c_{33}^{\left( 4 \right) } -c_{33}^{\left( 3 \right) } c_{33}^{\left( 3 \right) } },\;\gamma _{3230} =\frac{c_{33}^{\left( 3 \right) } c_{33}^{\left( 1 \right) } -c_{33}^{\left( 2 \right) } c_{33}^{\left( 2 \right) } }{c_{33}^{\left( 2 \right) } c_{33}^{\left( 4 \right) } -c_{33}^{\left( 3 \right) } c_{33}^{\left( 3 \right) } } \nonumber \\ \gamma _{3211}= & {} \frac{c_{33}^{\left( 3 \right) } c_{13}^{\left( 2 \right) } -c_{33}^{\left( 2 \right) } c_{13}^{\left( 3 \right) } }{c_{33}^{\left( 2 \right) } c_{33}^{\left( 4 \right) } -c_{33}^{\left( 3 \right) } c_{33}^{\left( 3 \right) } },\;\gamma _{3212} =\frac{c_{33}^{\left( 3 \right) } c_{13}^{\left( 3 \right) } -c_{33}^{\left( 2 \right) } c_{13}^{\left( 4 \right) } }{c_{33}^{\left( 2 \right) } c_{33}^{\left( 4 \right) } -c_{33}^{\left( 3 \right) } c_{33}^{\left( 3 \right) } } \end{aligned}$$
(A8)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huang, H., Li, N., Wang, B. et al. Two-Dimensional Coupling Vibration Analysis of Laterally Acoustically Coupled Two-Port Thin-Film Bulk Acoustic Resonators. Acta Mech. Solida Sin. 33, 464–478 (2020). https://doi.org/10.1007/s10338-019-00136-0

Download citation

Keywords

  • FBAR
  • RF filter
  • Two-dimensional theory
  • Mode coupling
  • Trapped energy