Skip to main content
Log in

Torsion Instability of Anisotropic Cylindrical Tissues with Growth

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

Growth shapes soft tissues not only through mass addition or volume expansion but also through deformation instabilities and consequent morphological evolution. In this paper, we probe the torsion instability of an anisotropically growing tube with fiber reinforcement, which mimics many tubular organs in animals or plants. We derive the Stroh formulation for the incremental boundary value problem and numerically solve it using the surface impedance method. A linear stability analysis is conducted to investigate the critical condition for the onset of wrinkling. The thresholds of helical wrinkling are calculated in terms of growth ratio and external load. The effect of fibers on the critical state under axial stretching is examined. It is found that the tangential growth tends to enhance the critical torsion angle but has a weak influence on the critical longitudinal mode of wrinkling, which, however, can be remarkably affected by the axial growth. Our study can help understand the formation of helical morphologies in biological materials and provide cues for engineering desired structures or devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Thompson DW. On growth and form. Cambridge: Cambridge University Press; 1942.

    MATH  Google Scholar 

  2. Feng XQ, Cao YP, Li B. Surface wrinkling mechanics of soft materials. Beijing: Science China Press; 2017.

    Google Scholar 

  3. Yamada KM, Cukierman E. Modeling tissue morphogenesis and cancer in 3D. Cell. 2007;130:601–10.

    Article  Google Scholar 

  4. Ben AM, Jia F. Anisotropic growth shapes intestinal tissues during embryogenesis. Proc Natl Acad Sci USA. 2013;110:10525–30.

    Article  Google Scholar 

  5. Savin T, Kurpios NA, Shyer AE, Florescu P, Liang H, Mahadevan L, Tabin CJ. On the growth and form of the gut. Nature. 2011;476:57–62.

    Article  Google Scholar 

  6. Xue SL, Yin SF, Li B, Feng XQ. Biochemomechanical modeling of vascular collapse in growing tumors. J Mech Phys Solids. 2018;121:463–79.

    Article  MathSciNet  Google Scholar 

  7. Budday S, Steinmann P, Kuhl E. The role of mechanics during brain development. J Mech Phys Solids. 2014;72:75–92.

    Article  MathSciNet  MATH  Google Scholar 

  8. Lin SZ, Li B, Lan G, Feng XQ. Activation and synchronization of the oscillatory morphodynamics in multicellular monolayer. Proc Natl Acad Sci USA. 2017;114:8157–62.

    Article  Google Scholar 

  9. Li B, Cao YP, Feng XQ, Gao H. Mechanics of morphological instabilities and surface wrinkling in soft materials: a review. Soft Matter. 2012;8:5728–45.

    Article  Google Scholar 

  10. Tallinen T, Chung JY, Rousseau F, Girard N, Lefèvre J, Mahadevan L. On the growth and form of cortical convolutions. Nat Phys. 2016;12:588–93.

    Article  Google Scholar 

  11. Wiggs BR, Hrousis CA, Drazen JM, Kamm RD. On the mechanism of mucosal folding in normal and asthmatic airways. J Appl Physiol. 1997;83:1814–21.

    Article  Google Scholar 

  12. Li B, Cao YP, Feng XQ, Gao H. Surface wrinkling of mucosa induced by volumetric growth: theory, simulation and experiment. J Mech Phys Solids. 2011;59:758–74.

    Article  MathSciNet  Google Scholar 

  13. Dervaux J, Couder Y, Guedeau-Boudeville MA, Ben AM. Shape transition in artificial tumors: from smooth buckles to singular creases. Phys Rev Lett. 2011;107:018103.

    Article  Google Scholar 

  14. O’Keeffe SG, Moulton DE, Waters SL, Goriely A. Growth-induced axial buckling of a slender elastic filament embedded in an isotropic elastic matrix. Int J Non-Linear Mech. 2013;56:94–104.

    Article  Google Scholar 

  15. Vandiver R, Goriely A. Tissue tension and axial growth of cylindrical structures in plants and elastic tissues. Europhys Lett. 2008;84:58004.

    Article  Google Scholar 

  16. Han HC. Twisted blood vessels: symptoms, etiology and biomechanical mechanisms. J Vasc Res. 2012;49:185–97.

    Article  Google Scholar 

  17. Gerbode SJ, Puzey JR, McCormick AG, Mahadevan L. How the cucumber tendril coils and overwinds. Science. 2012;337:1087–91.

    Article  Google Scholar 

  18. Wang JS, Wang G, Feng XQ, Kitamura T, Kang YL, Yu SW, Qin QH. Hierarchical chirality transfer in the growth of Towel Gourd tendrils. Sci Rep. 2013;3:3102.

    Article  Google Scholar 

  19. Berg HC. The rotary motor of bacterial flagella. Ann Rev Biochem. 2003;72:19–54.

    Article  Google Scholar 

  20. Balbi V, Ciarletta P. Helical buckling of thick-walled, pre-stressed, cylindrical tubes under a finite torsion. Math Mech Solids. 2015;20:625–42.

    Article  MathSciNet  MATH  Google Scholar 

  21. Ertepinar A, Wang A. Torsional buckling of an elastic thick-walled tube made of rubber-like material. Int J Solids Struct. 1975;11:329–37.

    Article  MATH  Google Scholar 

  22. Gent A, Hua KC. Torsional instability of stretched rubber cylinders. Int J Non-Linear Mech. 2004;39:483–9.

    Article  MATH  Google Scholar 

  23. Green AE, Spencer A. The stability of a circular cylinder under finite extension and torsion. J Math Phys. 1958;37:316–38.

    Article  MathSciNet  MATH  Google Scholar 

  24. Ben AM, Goriely A. Growth and instability in elastic tissues. J Mech Phys Solids. 2005;53:2284–319.

    Article  MathSciNet  MATH  Google Scholar 

  25. Ogden RW. Non-linear elastic deformations. New York: Courier Dover Publications; 1997.

    Google Scholar 

  26. Horgan CO, Saccomandi G. A new constitutive theory for fiber-reinforced incompressible nonlinearly elastic solids. J Mech Phys Solids. 2005;53:1985–2015.

    Article  MathSciNet  MATH  Google Scholar 

  27. Merodio J, Ogden R. Mechanical response of fiber-reinforced incompressible non-linearly elastic solids. Int J Non-Linear Mech. 2005;40:213–27.

    Article  MATH  Google Scholar 

  28. Merodio J, Ogden R. Material instabilities in fiber-reinforced nonlinearly elastic solids under plane deformation. Arch Mech. 2002;54:525–52.

    MathSciNet  MATH  Google Scholar 

  29. Goriely A, Robertson-Tessi M, Tabor M, Vandiver R. Elastic growth models. In: Mondaini RP, Pardalos PM, editors. Mathematical modelling of biosystems. Berlin: Springer; 2008. p. 1–44.

    Google Scholar 

Download references

Acknowledgements

Supports from National Natural Science Foundation of China (Grant Nos. 11432008, 11672161, and 11620101001) are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, S., Yin, SF., Li, B. et al. Torsion Instability of Anisotropic Cylindrical Tissues with Growth. Acta Mech. Solida Sin. 32, 621–632 (2019). https://doi.org/10.1007/s10338-019-00087-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10338-019-00087-6

Keywords

Navigation