Skip to main content
Log in

Misfit Strain-Induced Buckling for Transition-Metal Dichalcogenide Lateral Heterostructures: A Molecular Dynamics Study

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

Molecular dynamics simulations are performed to investigate the misfit strain-induced buckling of the transition-metal dichalcogenide (TMD) lateral heterostructures, denoted by the seamless epitaxial growth of different TMDs along the in-plane direction. The Stillinger–Weber potential is utilized to describe both the interaction for each TMD and the coupling between different TMDs, i.e., \(\hbox {MX}_{2}\) (with \(\mathrm{M}=\hbox {Mo}\), W and \(\mathrm{X}=\hbox {S}\), Se, Te). It is found that the misfit strain can induce strong buckling of the freestanding TMD lateral heterostructures of large area, resulting from the TMDs’ atomic-thick nature. The buckling phenomenon occurs in a variety of TMD lateral heterostructures of different compositions and in various patterns. Our findings raise a fundamental mechanical challenge for the structural stability of the freestanding TMD lateral heterostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Huang C, Wu S, Sanchez AM, Peters JJ, Beanland R, Ross JS. Lateral heterojunctions within monolayer MoSe\(_{2}\)\(\text{ WSe }_{2}\) semiconductors. Nat Mater. 2014;13(12):1096.

    Article  Google Scholar 

  2. Gong Y, Lin J, Wang X, Shi G, Lei S, Lin Z. Vertical and in-plane heterostructures from WS 2/MoS 2 monolayers. Nat Mater. 2014;13(12):1135.

    Article  Google Scholar 

  3. Zhang X-Q, Lin C-H, Tseng Y-W, Huang K-H, Lee Y-H. Synthesis of lateral heterostructures of semiconducting atomic layers. Nano Lett. 2014;15(1):410–5.

    Article  Google Scholar 

  4. Duan X, Wang C, Shaw JC, Cheng R, Chen Y, Li H. Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nat Nanotechnol. 2014;9(12):1024.

    Article  Google Scholar 

  5. Chen K, Wan X, Wen J, Xie W, Kang Z, Zeng X. Electronic properties of MoS2–WS2 heterostructures synthesized with two-step lateral epitaxial strategy. Acs Nano. 2015;9(10):9868–76.

    Article  Google Scholar 

  6. Chen K, Wan X, Xie W, Wen J, Kang Z, Zeng X. Lateral built-in potential of monolayer MoS2–WS2-in-plane heterostructures by a shortcut growth strategy. Adv Mater. 2015;27(41):6431–7.

    Article  Google Scholar 

  7. Gong Y, Lei S, Ye G, Li B, He Y, Keyshar K. Two-step growth of two-dimensional WSe2/MoSe2 heterostructures. Nano Lett. 2015;15(9):6135–41.

    Article  Google Scholar 

  8. Chen J, Zhou W, Tang W, Tian B, Zhao X, Xu H. Lateral epitaxy of atomically sharp WSe2/WS2 heterojunctions on silicon dioxide substrates. Chem Mater. 2016;28(20):7194–7.

    Article  Google Scholar 

  9. Ling X, Lin Y, Ma Q, Wang Z, Song Y, Yu L. Parallel stitching of 2D materials. Adv Mater. 2016;28(12):2322–9.

    Article  Google Scholar 

  10. Liu B, Ma Y, Zhang A, Chen L, Abbas AN, Liu Y. High-performance WSe2 field-effect transistors via controlled formation of in-plane heterojunctions. ACS Nano. 2016;10(5):5153–60.

    Article  Google Scholar 

  11. Son Y, Li M-Y, Cheng C-C, Wei K-H, Liu P, Wang QH. Observation of switchable photoresponse of a monolayer WSe2–MoS2 lateral heterostructure via photocurrent spectral atomic force microscopic imaging. Nano Lett. 2016;16(6):3571–7.

    Article  Google Scholar 

  12. Chen X, Qiu Y, Yang H, Liu G, Zheng W, Feng W. In-plane mosaic potential growth of large-area 2D layered semiconductors MoS2–MoSe2 lateral heterostructures and photodetector application. ACS Appl Mater Interfaces. 2017;9(2):1684–91.

    Article  Google Scholar 

  13. Li MY, Pu J, Huang JK, Miyauchi Y, Matsuda K, Takenobu T. Self-aligned and scalable growth of monolayer WSe2–MoS2 lateral heterojunctions. Adv Funct Mater. 2018;28(17):1706860.

    Article  Google Scholar 

  14. Sahoo PK, Memaran S, Xin Y, Balicas L, Gutiérrez HR. One-pot growth of two-dimensional lateral heterostructures via sequential edge-epitaxy. Nature. 2018;553(7686):63.

    Article  Google Scholar 

  15. Li M-Y, Shi Y, Cheng C-C, Lu L-S, Lin Y-C, Tang H-L. Epitaxial growth of a monolayer WSe2–MoS2 lateral pn junction with an atomically sharp interface. Science. 2015;349(6247):524–8.

    Article  Google Scholar 

  16. Zhang Z, Chen P, Duan X, Zang K, Luo J, Duan X. Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices. Science. 2017;357:eaan6814.

    Google Scholar 

  17. Bogaert K, Liu S, Chesin J, Titow D, Gradečak S, Garaj S. Diffusion-mediated synthesis of MoS2/WS2 lateral heterostructures. Nano Lett. 2016;16(8):5129–34.

    Article  Google Scholar 

  18. Li H, Wu X, Liu H, Zheng B, Zhang Q, Zhu X. Composition-modulated two-dimensional semiconductor lateral heterostructures via layer-selected atomic substitution. ACS Nano. 2016;11(1):961–7.

    Article  Google Scholar 

  19. Mahjouri-Samani M, Lin M-W, Wang K, Lupini AR, Lee J, Basile L. Patterned arrays of lateral heterojunctions within monolayer two-dimensional semiconductors. Nat Commun. 2015;6:7749.

    Article  Google Scholar 

  20. Li H, Li P, Huang J-K, Li M-Y, Yang C-W, Shi Y. Laterally stitched heterostructures of transition metal dichalcogenide: chemical vapor deposition growth on lithographically patterned area. ACS Nano. 2016;10(11):10516–23.

    Article  Google Scholar 

  21. Ullah F, Sim Y, Le CT, Seong M-J, Jang JI, Rhim SH. Growth and simultaneous valleys manipulation of two-dimensional MoSe2–WSe2 lateral heterostructure. ACS Nano. 2017;11(9):8822–9.

    Article  Google Scholar 

  22. Kobayashi Y, Mori S, Maniwa Y, Miyata Y. Bandgap-tunable lateral and vertical heterostructures based on monolayer Mo1-xWxS2 alloys. Nano Res. 2015;8(10):3261–71.

    Article  Google Scholar 

  23. Zhang W, Li X, Jiang T, Song J, Lin Y, Zhu L. CVD synthesis of Mo (1- x) W x S 2 and MoS 2 (1- x) Se 2x alloy monolayers aimed at tuning the bandgap of molybdenum disulfide. Nanoscale. 2015;7(32):13554–60.

    Article  Google Scholar 

  24. Yoshida S, Kobayashi Y, Sakurada R, Mori S, Miyata Y, Mogi H. Microscopic basis for the band engineering of Mo 1- x W x S 2-based heterojunction. Sci Rep. 2015;5:14808.

    Article  Google Scholar 

  25. Duan X, Wang C, Fan Z, Hao G, Kou L, Halim U. Synthesis of WS2 x Se2-2 x alloy nanosheets with composition-tunable electronic properties. Nano Lett. 2015;16(1):264–9.

    Article  Google Scholar 

  26. Liu X, Wu J, Yu W, Chen L, Huang Z, Jiang H. Monolayer WxMo1- xS2 grown by atmospheric pressure chemical vapor deposition: bandgap engineering and field effect transistors. Adv Funct Mater. 2017;27(13):1606469.

    Article  Google Scholar 

  27. Aslan OB, Datye IM, Mleczko MJ, Sze Cheung K, Krylyuk S, Bruma A. Probing the optical properties and strain-tuning of ultrathin Mo1-x W x Te2. Nano Lett. 2018;18(4):2485–91.

    Article  Google Scholar 

  28. Apte A, Kochat V, Rajak P, Krishnamoorthy A, Manimunda P, Hachtel JA. Structural phase transformation in strained monolayer MoWSe2 alloy. ACS Nano. 2018;12(4):3468–76.

    Article  Google Scholar 

  29. Li H, Zhang Q, Duan X, Wu X, Fan X, Zhu X. Lateral growth of composition graded atomic layer MoS2 (1-x) Se2 x nanosheets. J Am Chem Soc. 2015;137(16):5284–7.

    Article  Google Scholar 

  30. Zheng S, Sun L, Yin T, Dubrovkin AM, Liu F, Liu Z. Monolayers of WxMo1- xS2 alloy heterostructure with in-plane composition variations. Appl Phys Lett. 2015;106(6):063113.

    Article  Google Scholar 

  31. Wu X, Li H, Liu H, Zhuang X, Wang X, Fan X. Spatially composition-modulated two-dimensional WS 2x Se 2 (1- x) nanosheets. Nanoscale. 2017;9(14):4707–12.

    Article  Google Scholar 

  32. Li Z, Zheng J, Zhang Y, Zheng C, Woon W-Y, Chuang M-C. Synthesis of ultrathin composition graded doped lateral WSe2/WS2 heterostructures. ACS Appl Mater Interfaces. 2017;9(39):34204–12.

    Article  Google Scholar 

  33. Xie S, Tu L, Han Y, Huang L, Kang K, Lao KU. Coherent, atomically thin transition-metal dichalcogenide superlattices with engineered strain. Science. 2018;359(6380):1131–6.

    Article  Google Scholar 

  34. Zhang C, Li M-Y, Tersoff J, Han Y, Su Y, Li L-J. Strain distributions and their influence on electronic structures of WSe 2-MoS 2 laterally strained heterojunctions. Nat Nanotechnol. 2018;13(2):152.

    Article  Google Scholar 

  35. Alred JM, Zhang Z, Hu Z, Yakobson BI. Interface-induced warping in hybrid two-dimensional materials. Nano Res. 2015;8(6):2015.

    Article  Google Scholar 

  36. Shi Z, Zhang Q, Schwingenschlögl U. Alloying as a route to monolayer transition metal dichalcogenides with improved optoelectronic performance: Mo (S1-x Se x) 2 and Mo1-y W y S2. ACS Appl Energy Mater. 2018;1(5):2208–14.

    Article  Google Scholar 

  37. Wei W, Dai Y, Niu C, Huang B. Controlling the electronic structures and properties of in-plane transition-metal dichalcogenides quantum wells. Sci Rep. 2015;5:17578.

    Article  Google Scholar 

  38. Wei W, Dai Y, Sun Q, Yin N, Han S, Huang B. Electronic structures of in-plane two-dimensional transition-metal dichalcogenide heterostructures. Phys Chem Chem Phys. 2015;17(43):29380–6.

    Article  Google Scholar 

  39. Guo Y, Robertson J. Band engineering in transition metal dichalcogenides: stacked versus lateral heterostructures. Appl Phys Lett. 2016;108(23):233104.

    Article  Google Scholar 

  40. Wei W, Dai Y, Huang B. In-plane interfacing effects of two-dimensional transition-metal dichalcogenide heterostructures. Phys Chem Chem Phys. 2016;18(23):15632–8.

    Article  Google Scholar 

  41. Zhang J, Xie W, Zhao J, Zhang S. Band alignment of two-dimensional lateral heterostructures. 2D Mater. 2016;4(1):015038.

    Article  Google Scholar 

  42. Wei W, Dai Y, Huang B. Straintronics in two-dimensional in-plane heterostructures of transition-metal dichalcogenides. Phys Chem Chem Phys. 2016;19(1):663–72.

    Article  Google Scholar 

  43. Aras M, Kılıç Ç, Ciraci S. Lateral and vertical heterostructures of transition metal dichalcogenides. J Phys Chem C. 2018;122(3):1547–55.

    Article  Google Scholar 

  44. Kang J, Sahin H, Peeters FOM. Tuning carrier confinement in the MoS2/WS2 lateral heterostructure. J Phys Chem C. 2015;119(17):9580–6.

    Article  Google Scholar 

  45. An Y, Zhang M, Wu D, Fu Z, Wang K. The electronic transport properties of transition-metal dichalcogenide lateral heterojunctions. J Mater Chem. 2016;4(46):10962–6.

    Google Scholar 

  46. Yang Z, Pan J, Liu Q, Wu N, Hu M, Ouyang F. Electronic structures and transport properties of a MoS 2-NbS 2 nanoribbon lateral heterostructure. Phys Chem Chem Phys. 2017;19(2):1303–10.

    Article  Google Scholar 

  47. Cao Z, Harb M, Lardhi S, Cavallo L. Impact of interfacial defects on the properties of monolayer transition metal dichalcogenide lateral heterojunctions. J Phys Chem Lett. 2017;8(7):1664–9.

    Article  Google Scholar 

  48. Sun J, Lin N, Ren H, Tang C, Yang L, Zhao X. Gas adsorption on MoS 2/WS 2 in-plane heterojunctions and the I-V response: a first principles study. RSC Adv. 2016;6(21):17494–503.

    Article  Google Scholar 

  49. Yang Y, Fang WH, Long R. Disparity in photoexcitation dynamics between vertical and lateral MoS2/WSe2 heterojunctions: time-domain simulation emphasizes the importance of donor-acceptor interaction and band alignment. J Phys Chem Lett. 2017;8:5771–8.

    Article  Google Scholar 

  50. Sun Q, Dai Y, Ma Y, Yin N, Wei W, Yu L. Design of lateral heterostructure from arsenene and antimonene. 2D Mater. 2016;3(3):035017.

    Article  Google Scholar 

  51. Jin H, Li J, Wang B, Yu Y, Wan L, Xu F. Electronics and optoelectronics of lateral heterostructures within monolayer indium monochalcogenides. J Mater Chem C. 2016;4(47):11253–60.

    Article  Google Scholar 

  52. Leenaerts O, Vercauteren S, Schoeters B, Partoens B. System-size dependent band alignment in lateral two-dimensional heterostructures. 2D Mater. 2016;3(2):025012.

    Article  Google Scholar 

  53. Leenaerts O, Vercauteren S, Partoens B. Band alignment of lateral two-dimensional heterostructures with a transverse dipole. Appl Phys Lett. 2017;110(18):181602.

    Article  Google Scholar 

  54. Cheng K, Guo Y, Han N, Su Y, Zhang J, Zhao J. Lateral heterostructures of monolayer group-IV monochalcogenides: band alignment and electronic properties. J Mater Chem C. 2017;5(15):3788–95.

    Article  Google Scholar 

  55. Sun Q, Dai Y, Niu C, Ma Y, Wei W, Yu L. Lateral topological crystalline insulator heterostructure. 2D Mater. 2017;4(2):025038.

    Article  Google Scholar 

  56. Sun Q, Dai Y, Yin N, Yu L, Ma Y, Wei W. Two-dimensional square transition metal dichalcogenides with lateral heterostructures. Nano Res. 2017;10(11):3909–19.

    Article  Google Scholar 

  57. Yuan J, Yu N, Wang J, Xue K-H, Miao X. Design lateral heterostructure of monolayer ZrS2 and HfS2 from first principles calculations. Appl Surf Sci. 2018;436:919–26.

    Article  Google Scholar 

  58. Jiang J-W, Zhou Y-P. Parameterization of Stillinger–Weber potential for two-dimensional atomic crystals. Handbook of Stillinger–Weber potential parameters for two-dimensional atomic crystals. The Hague: InTech; 2017.

    Book  Google Scholar 

  59. Jiang J-W. Parametrization of Stillinger–Weber potential based on valence force field model: application to single-layer MoS2 and black phosphorus. Nanotechnology. 2015;26(31):315706.

    Article  Google Scholar 

  60. Nosé S. A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys. 1984;81(1):511–9.

    Article  Google Scholar 

  61. Hoover WG. Canonical dynamics: equilibrium phase-space distributions. Phys Rev A. 1985;31(3):1695.

    Article  Google Scholar 

  62. Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys. 1995;117(1):1–19.

    Article  MATH  Google Scholar 

  63. Stukowski A. Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool. Model Simul Mater Sci Eng. 2009;18(1):015012.

    Article  MathSciNet  Google Scholar 

  64. Kushima A, Qian X, Zhao P, Zhang S, Li J. Ripplocations in van der Waals Layers. Nano Lett. 2015;15(2):1302–8.

    Article  Google Scholar 

  65. Zhou Y-P, Jiang J-W. Molecular dynamics simulations for mechanical properties of borophene: parameterization of valence force field model and Stillinger–Weber potential. Sci Rep. 2017;7:45516.

    Article  Google Scholar 

Download references

Acknowledgements

The work is supported by the Recruitment Program of Global Youth Experts of China, the National Natural Science Foundation of China (NSFC) under Grant No. 11504225, and the Innovation Program of Shanghai Municipal Education Commission under Grant No. 2017-01-07-00-09-E00019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Wu Jiang.

Appendix: Modification for LAMMPS

Appendix: Modification for LAMMPS

We point out one necessary modification for the three-body SW potential implemented in LAMMPS. More details on this modification can be found from our earlier work [65]. Overall, the modification is done in two steps.

  1. 1)

    First, find the following line in the pair sw.cpp source file,

    delcs = cs - paramijk->costheta;

  2. 2)

    Second, insert the following new lines after the above line,

if(fabs(delcs) <= 0.25)

{

delcs = delcs; }

else if(fabs(delcs) < 0.35)

{

delcs = delcs * (0.5+0.5*sin(3.142*(delcs-0.25)/(0.35-0.25)+0.5*3.142));

}

else

{

delcs = 0.0;

}

Then, recompile the LAMMPS package. The recompiled LAMMPS executable file can be used to simulate materials with inequivalent angles around each atom (like TMDs in the present work) using the SW potential. This modification does not affect other simulations with LAMMPS.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, JW. Misfit Strain-Induced Buckling for Transition-Metal Dichalcogenide Lateral Heterostructures: A Molecular Dynamics Study. Acta Mech. Solida Sin. 32, 17–28 (2019). https://doi.org/10.1007/s10338-018-0049-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10338-018-0049-z

Keywords

Navigation