An SBFEM-Based Model for Hydraulic Fracturing in Quasi-Brittle Materials

Original Paper
  • 3 Downloads

Abstract

A numerical model based on the scaled boundary finite element method is developed to simulate the hydraulic fracturing in concrete-like quasi-brittle materials using cohesive interface elements. The shadow domain method developed previously (Yang and Deeks in Eng Fract Mech 143(4):333–354, 2007) is extended to consider crack-width-dependent hydraulic pressure and cohesive traction, so that the stress intensity factors caused by both crack-face forces are semi-analytically calculated separately in the same way. The crack propagation is determined by the criterion of \(K_\mathrm{I} \geqslant { \mathrm 0}\), and the propagation direction by the linear elastic fracture mechanics criteria. Two examples of concrete structures are modeled, and the results are in good agreement with the experimental data and others numerical results.

Keywords

Scaled boundary finite element method Hydraulic fracture Cohesive crack model Crack propagation 

Notes

Acknowledgements

This research is funded by the National Natural Science Foundation of China (Nos. 51779222 and 51378461), Zhejiang Provincial Natural Science Foundation of China (No. LR14E080002), and the Fundamental Research Funds for the Central Universities (No. 2017QNA4027).

References

  1. 1.
    Jia JS, Li X, Zheng CY. Studies on safety problem of high gravity dams higher than 200 m with consideration of hydraulic fracturing under water pressure. J Hydraul Eng. 2006;37(12):1509–15.Google Scholar
  2. 2.
    Brühwiler E, Saouma VE. Water fracture interaction in concrete—part I: fracture properties. Mater J. 1995;92(3):296–303.Google Scholar
  3. 3.
    Brühwiler E, Saouma VE. Water fracture interaction in concrete—Part II: hydrostatic pressure in crack. Mater J. 1995;92(4):383–90.Google Scholar
  4. 4.
    Slowik V, Saouma VE. Water pressure in propagating concrete cracks. J Struct Eng. 2000;126(2):235–42.CrossRefGoogle Scholar
  5. 5.
    Zhou D, Zhang G, Zhao B, et al. Experimental investigation on non-planar fractures mechanisms in hydraulic fracturing. J Unconv Oil Gas Resour. 2016;15:106–12.CrossRefGoogle Scholar
  6. 6.
    Yang H, Xie SY, Secq J, et al. Experimental study and modeling of hydromechanical behavior of concrete fracture. Water Sci Eng. 2017;10(2):97–106.CrossRefGoogle Scholar
  7. 7.
    Li ZL, Wang YH, et al. Process analysis of water infusion in rock mass or concrete fracture under constant water head. J Sichuan Univ (Eng Sci Ed). 2010;42(4):13–7.MathSciNetGoogle Scholar
  8. 8.
    Segura JM, Carol I. Numerical modeling of pressurized fracture evolution in concrete using zero-thickness interface elements. Eng Fract Mech. 2010;77(9):1386–99.CrossRefGoogle Scholar
  9. 9.
    Fang XJ, Jin F. Coupling model for interaction between fissure water and cracking in concrete. J Hydraul Eng. 2007;38(12):1466–74.Google Scholar
  10. 10.
    Wang KF, Zhang Q, Xia XZ. Modeling of hydraulic fracturing for concrete gravity dams under fluid-structure interaction. Appl Math Mech. 2015;36(9):970–80.Google Scholar
  11. 11.
    Mao S, Li GS. Extended finite element modeling of hydraulic fracture propagation. Eng Mech. 2014;31(10):123–8.Google Scholar
  12. 12.
    Oliaei MN, Pak A, Soga K. A coupled hydro-mechanical analysis for prediction of hydraulic fracture propagation in saturated porous media using EFG mesh-less method. Comput Geotech. 2014;55(2):254–66.CrossRefGoogle Scholar
  13. 13.
    Zhang GX, Li X, Li HF. Simulation of hydraulic fracture utilizing numerical manifold method. Sci China Technol Sci. 2015;58(9):1542–57.CrossRefGoogle Scholar
  14. 14.
    Zhang X, Jeffrey RG. The role of friction and secondary flaws on deflection and re-initiation of hydraulic fractures at orthogonal pre-existing fractures. Geophys J R Astron Soc. 2006;167(1):1454–65.CrossRefGoogle Scholar
  15. 15.
    Damjanac B, Cundall P. Application of distinct element methods to simulation of hydraulic fracturing in naturally fractured reservoirs. Comput Geotech. 2016;71:283–94.CrossRefGoogle Scholar
  16. 16.
    Wolf JP, Song C. Finite-Element Modeling of Unbounded Media. New York: Wiley; 1996.MATHGoogle Scholar
  17. 17.
    Yang ZJ. Fully automatic modelling of mixed-mode crack propagation using scaled boundary finite element method. Eng Fract Mech. 2006;73(12):1711–31.CrossRefGoogle Scholar
  18. 18.
    Yang ZJ, Deeks AJ. Fully-automatic modelling of cohesive crack growth using a finite element-scaled boundary finite element coupled method. Int J Fract. 2007;143(4):333–54.CrossRefMATHGoogle Scholar
  19. 19.
    Ooi ET, Yang ZJ. Modelling dynamic crack propagation using the scaled boundary finite element method. Int J Numer Methods Eng. 2011;88(4):329–49.MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Ooi ET, Song C, Tin-Loi F. A scaled boundary polygon formulation for elasto-plastic analyses. Comput Methods Appl Mech Eng. 2014;268(1):905–37.MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Deeks AJ, Cheng L. Potential flow around obstacles using the scaled boundary finite-element method. Int J Numer Methods Fluids. 2003;41(7):721–41.CrossRefMATHGoogle Scholar
  22. 22.
    Lin G, Du JG. Analysis of dam-reservoir interaction based on SBFEM. J Dalian Univ Technol. 2005;45(5):723–9.Google Scholar
  23. 23.
    Yan JY, Zhang C, Jin F. A coupling procedure of FE and SBFE for soil–structure interaction in the time domain. Int J Numer Methods Eng. 2004;59(11):1453–71.CrossRefMATHGoogle Scholar
  24. 24.
    Ooi ET, Man H, Natarajan S, et al. Adaptation of quadtree meshes in the scaled boundary finite element method for crack propagation modeling. Eng Fract Mech. 2015;144:101–17.CrossRefGoogle Scholar
  25. 25.
    Natarajan S, Wang JC, Song C, et al. Isogeometric analysis enhanced by the scaled boundary finite element method. Comput Methods Appl Mech Eng. 2015;283:733–62.MathSciNetCrossRefGoogle Scholar
  26. 26.
    Li JB, Chen BB, Chen BB, et al. Modeling crack propagation with the extended scaled boundary finite element method based on the level set method. Comput Struct. 2016;167(C):50–68.CrossRefGoogle Scholar
  27. 27.
    Deeks AJ, Wolf JP. A virtual work derivation of the scaled boundary finite-element method for elastostatics. Comput Mech. 2002;28(6):489–504.MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Chidgzey SR, Deeks AJ. Determination of coefficients of crack tip asymptotic fields using the scaled boundary finite element method. Eng Fract Mech. 2005;72(13):2019–36.CrossRefGoogle Scholar
  29. 29.
    Hillerborg A, Modeer M, Petersson P. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem Concr Res. 1976;6:773–82.CrossRefGoogle Scholar
  30. 30.
    Petersson PE. Crack growth and development of fracture zone in plain concrete and similar materials. Report TVBM-1006, Lund Institute of Technology, Lund, Sweden, 1981;19–28.Google Scholar
  31. 31.
    Xie M, Gerstle WH. Energy-based cohesive crack propagation modeling. J Eng Mech. 1995;121:1349–58.CrossRefGoogle Scholar
  32. 32.
    Yang ZJ, Chen JF. Fully automatic modelling of cohesive discrete crack propagation in concrete beams using local arc-length methods. Int J Solids Struct. 2004;41(3):801–26.CrossRefMATHGoogle Scholar
  33. 33.
    Carpinteri A, Valente S, Ferrara G, et al. Experimental and numerical fracture modeling of a gravity dam. New York: Marcel Dekker; 1994.Google Scholar
  34. 34.
    Barpi F, Valente S. Numerical simulation of prenotched gravity dam models. J Eng Mech. 2000;126(6):611–9.CrossRefGoogle Scholar
  35. 35.
    Shi M, Zhong H, Ooi ET, et al. Modeling of crack propagation of gravity dams by scaled boundary polygons and cohesive crack model. Int J Fract. 2013;183(1):29–48.CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics and Technology 2018

Authors and Affiliations

  1. 1.College of Civil Engineering and ArchitectureZhejiang UniversityHangzhouChina
  2. 2.School of Civil EngineeringShaoxing UniversityShaoxingChina

Personalised recommendations