Skip to main content

Advertisement

Log in

Plastic Strain Energy Model for Rock Salt Under Fatigue Loading

  • Original Paper
  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

A Correction to this article was published on 22 November 2018

This article has been updated

Abstract

The fatigue test for rock salt is conducted to investigate the effects of stress amplitude, loading frequency and loading rate on the plastic strain energy, from which the evaluation rule of the plastic strain energy is analyzed, which is divided into three stages: cyclic hardening, saturation and cyclic softening. The total accumulated plastic strain energy only depends on the mechanical behavior of rock salt, but is immune to the loading conditions. A novel model for fatigue life prediction is proposed based on the invariance of the total plastic dissipation energy and the stability of the plastic energy per cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Change history

  • 22 November 2018

    In all the articles in Acta Mechanica Solida Sinica, Volume 31, Issues 1–4, the copyright is incorrectly displayed as “The Chinese Society of Theoretical and Applied Mechanics and Technology ” where it should be “The Chinese Society of Theoretical and Applied Mechanics”.

References

  1. Liang WG, Zhao YS, Xu SG, Dusseault MB. Effect of strain rate on the mechanical properties of salt rock. Int J Rock Mech Min Sci. 2011;48:161–7.

    Article  Google Scholar 

  2. Liang WG, Zhang CD, Gao HB, Yang XQ, Xu SG, Zhao YS. Experiments on mechanical properties of salt rocks under cyclic loading. J Rock Mech Geotech Eng. 2012;4:54–61.

    Article  Google Scholar 

  3. Hunsche U, Albercht H. Results of true triaxial strength tests on rock salt. Eng Fract Mech. 1990;35:867–77.

    Article  Google Scholar 

  4. Senseny PE, Hansen FD, Russell JE. Mechanical behaviour of rock salt: phenomenology and micromechanisms. Int J Rock Mech Min Sci. 1992;29:363–78.

    Article  Google Scholar 

  5. Zhang H, Wang Z, Zheng Y, Duan P, Ding S. Study on tri-axial creep experiment and constitute relation of different rock salt. Saf Sci. 2012;50:801–5.

    Article  Google Scholar 

  6. Yang C, Daemen JJK, Yin JH. Experimental investigation of creep behavior of salt rock. Int J Rock Mech Min Sci. 1999;36:233–42.

    Article  Google Scholar 

  7. Liang W, Yang C, Zhao Y. Experimental investigation of mechanical properties of bedded salt rock. Int J Rock Mech Min Sci. 2007;44:400–11.

    Article  Google Scholar 

  8. Aubertin M, Julien MR, Servant S, Gill DE. A rate-dependent model fort he ductile behavior of salt rocks. Can Geotech J. 1999;36:660–74.

    Article  Google Scholar 

  9. Hamami M. Simultaneous effect of loading rate and confining pressure on the deviator evolution in rock salt. Int J Rock Mech Min Sci. 1999;36:827–31.

    Article  Google Scholar 

  10. Dubey RK, Gairola VK. Influence of stress rate on rheology-an experimental study on rock salt of Simla Himalaya. Geotech Geol Eng. 2005;23:757–72.

    Article  Google Scholar 

  11. Jin J, Cristescu ND. An elastic/viscoplastic model for transient creep of rock salt. Int J Plast. 1998;14:85–107.

    Article  Google Scholar 

  12. Wawersik WR, Zeuch DH. Modeling and mechanistic interpretation of creep of rock salt below \(200^{\circ }\text{ C }\). Tectonophysics. 1986;121:125–52.

    Article  Google Scholar 

  13. Liang WG, Xu SG, Zhao YS. Experimental study of temperature effects on physical and mechanical characteristics of salt rock. Rock Mech Rock Eng. 2006;39:469–82.

    Article  Google Scholar 

  14. Sheinin VI, Blokhin DI. Features of thermomechanical effects in rock salt sample under uniaxial compression. J Min Sci. 2012;48:39–45.

    Article  Google Scholar 

  15. Kwon S, Kim J. Effect of temperature variation on a rock salt deformation—a case study. Min Techol A. 2005;114:89–98.

    Article  Google Scholar 

  16. Zhou H, Hu DW, Zhang F, Shao JF. A thermo-plastic/viscoplastic damage model for geomaterials. Acta Mechanica Solida Sinica. 2011;24(3):195–208.

    Article  Google Scholar 

  17. Wang GJ. A new constitutive creep-damage model for rocksalt. Int J Rock Mech Min Sci. 2004;41:364.

    Article  Google Scholar 

  18. Weidinger P, Hampel A, Blum W, Hunsche U. Creep behavior of natural rock salt and its description with the composite model. Mater Sci Eng A. 1997;234–236:646–8.

    Article  Google Scholar 

  19. Janos LU, Christopher JS, Hendrik JZ. Weakening of rock salt by water during long-term creep. Nature. 1986;324:554–7.

    Article  Google Scholar 

  20. Fuenkajorn K, Phueakphum D. Effects of cyclic loading on mechanical properties of Maha Sarakham salt. Eng Geol. 2010;112:43–52.

    Article  Google Scholar 

  21. Liu J, Xie H, Hou Z, Yang C, Chen L. Damage evolution of rock salt under cyclic loading in unixial tests. Acta Geotech. 2014;9:153–60.

    Article  Google Scholar 

  22. Guo Y, Yang C, Mao H. Mechanical properties of Jintan rock salt under complex stress paths. Int J Rock Mech Min Sci. 2012;56:54–61.

    Article  Google Scholar 

  23. Ren S, Bai YM, Zhang JP, Jiang DY, Yang CH. Experimental investigation of the fatigue properties of salt rock. Int J Rock Mech Min Sci. 2013;64:68–72.

    Article  Google Scholar 

  24. Cristescu N. A general constitutive equation for transient and stationary creep of rock salt. Int J Rock Mech Min Sci Geomech Abstr. 1993;30:125–39.

    Article  Google Scholar 

  25. Liu EL, He SM. Effects of cyclic dynamic loading on the mechanical properties of intact rock samples under confining pressure conditions. Eng Geol. 2012;125:81–91.

    Article  Google Scholar 

  26. Xiao JQ, Ding DX, Jiang FL, Gen X. Fatigue damage variable and evolution of rock subjected to cyclic loading. Int J Rock Mech Min Sci. 2010;47:461–8.

    Article  Google Scholar 

  27. Xiao JQ, Ding DX, Gen X. Inverted S-shaped model for nonlinear fatigue damage of rock. Int J Rock Mech Min Sci. 2009;46:643–8.

    Article  Google Scholar 

  28. Ellyin F, Kujawski D. Plastic strain energy in fatigue failure. ASME J Press Vessel Technol. 1984;106:342–7.

    Article  Google Scholar 

  29. Feltner CE, Morrow JD. Microplastic strain hysteresis energy as a criterion for fatigue fracture. ASME J Basic Eng. 1961;83:15–22.

    Article  Google Scholar 

  30. Abel A, Muir M. Mechanical hysteresis and the initial stages of fatigue. Met Sci. 1975;9:459–63.

    Article  Google Scholar 

  31. Lefebvre D, Ellyin F. Cyclic response and inelastic strain energy in low cycle fatigue. Int J Fatigue. 1984;6(1):9–15.

    Article  Google Scholar 

Download references

Acknowledgements

This study is sponsored by the National Natural Science Foundation of China (Nos. 51179153 and 11572246). The financial support provided by these sponsors is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, M.M., Li, N., Huang, B.Q. et al. Plastic Strain Energy Model for Rock Salt Under Fatigue Loading. Acta Mech. Solida Sin. 31, 322–331 (2018). https://doi.org/10.1007/s10338-018-0025-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10338-018-0025-7

Keywords

Navigation