Acta Mechanica Solida Sinica

, Volume 31, Issue 3, pp 310–321 | Cite as

Mapping Microscale Strain Fields Around a Crack Tip in Molybdenum Via Geometric Phase Analysis and Digital Image Correlation

  • Chunwang Zhao
  • Wencai Li
  • Jijun Li
  • Yongxiang Li
  • Quanlong Liu
  • Lifu Wang
  • Qingyu Hou
  • Yongming Xing


Uniaxial tension tests were conducted on single-edge-notched tensile specimens of pure molybdenum with a mesh grid pattern in front of the notch. A series of images of crack initialization and propagation with a distorted mesh grid pattern were obtained by means of in situ scanning electron microscopy. Strain fields around the crack tip were mapped successively using geometric phase analysis and digital image correlation techniques, and then compared with the predictions obtained through linear elastic fracture mechanics (LEFM). The comparison shows that the measured strain distribution ahead of the crack tip is consistent with the LEFM predictions of up to 25 \(\upmu \)m from the crack tip.


Crack Strain field Geometric phase analysis Digital image correlation 



This work was supported by the National Natural Science Foundation of China (Grant Nos. 11562016 and 11672175).


  1. 1.
    Rice JR. Dislocation nucleation from a crack-tip: an analysis based on Peierls concept. J Mech Phys Solids. 1992;40:239–71.CrossRefGoogle Scholar
  2. 2.
    Sutton MA, Deng XM, Ma FS, Newman JC Jr. Development and application of a crack-tip opening displacement-based mixed mode fracture criterion. Int J Solid Struct. 2000;37:3591–618.CrossRefzbMATHGoogle Scholar
  3. 3.
    Yoneyama S, Ogawa T, Kobayashi Y. Evaluating mixed-mode stress intensity factors from full-field displacement fields obtained by optical methods. Eng Fract Mech. 2007;74:1399–412.CrossRefGoogle Scholar
  4. 4.
    Xing YM, Dai FL, Yang W. Experimental study about nano-deformation field near quasi-cleavage crack-tip. Sci China A. 2000;43:963–8.CrossRefGoogle Scholar
  5. 5.
    Robertson SW, Mehta A, Pelton AR, Ritchie RO. Evolution of crack-tip transformation zones in superelastic Nitinol subjected to in situ fatigue: a fracture mechanics and synchrotron X-ray microdiffraction analysis. Acta Mater. 2007;55:6198–207.CrossRefGoogle Scholar
  6. 6.
    Tanaka M, Higashida K, Kaneko K. Crack-tip dislocations revealed by electron tomography in silicon single crystal. Scr Mater. 2008;59:901–4.CrossRefGoogle Scholar
  7. 7.
    Fan FF, Kalnaus S, Jiang YY. Modeling of fatigue crack growth of stainless steel 304L. Mech Mater. 2008;40:961–73.CrossRefGoogle Scholar
  8. 8.
    Shah M, Mabru C, Rezai-Aria F, Souki I, Pasha RA. An estimation of stress intensity factor in a clamped SE(T) specimen through numerical simulation and experimental verification: case of FCGR of AISI H11 tool steel. Acta Metall Sin (Engl Lett). 2012;25:307–19.Google Scholar
  9. 9.
    Chen JH, Cao R, Wang GZ, Zhang J. Study on notch fracture of TiAl alloys at room temperature. Metall Mater Trans A. 2004;35(A):439–56.CrossRefGoogle Scholar
  10. 10.
    Jin H, Lu WY, Korellis J. Micro-scale deformation measurement using the digital image correlation technique and scanning electron microscope imaging. J Strain Anal Eng. 2008;43:719–28.CrossRefGoogle Scholar
  11. 11.
    Jin H, Haldar S, Bruck HA, Lu WY. Grid method for microscale discontinuous deformation measurement. Exp Mech. 2011;51:565–74.CrossRefGoogle Scholar
  12. 12.
    Daly S, Miller A, Ravichandran G, Bhattacharya K. An experimental investigation of crack initiation in thin sheets of nitinol. Acta Mater. 2007;55:6322–30.CrossRefGoogle Scholar
  13. 13.
    Sun YF, Pang JHL. Experimental and numerical investigations of near-crack-tip deformation in a solder alloy. Acta Mater. 2008;56:537–48.CrossRefGoogle Scholar
  14. 14.
    Hÿtch MJ, Putaux JL, Pénisson JM. Measurement of the displacement field of dislocations to 0.03 Å by electron microscopy. Nature. 2003;423:270–3.CrossRefGoogle Scholar
  15. 15.
    Zhao CW, Xing YM, Zhou CE, Bai PC. Experimental examination of displacement and strain fields in an edge dislocation core. Acta Mater. 2008;56:2570–5.CrossRefGoogle Scholar
  16. 16.
    Zhao CW, Xing YM, Bai PC, Hou JF, Dai XJ. Quantitative measurement of deformation field around low-angle grain boundaries by electron microscopy. Physica B. 2008;403:1838–42.CrossRefGoogle Scholar
  17. 17.
    Wang QH, Xie HM, Liu ZW, Lou XH, Wang JF, Xu KW, Zhang ZH, Liao JH, Gu CZ. Residual stress assessment of interconnects by slot milling with FIB and geometric phase analysis. Opt Lasers Eng. 2010;48:1113–8.CrossRefGoogle Scholar
  18. 18.
    Meng B, Wan M, Wu XD, Zhou YK, Chang C. Constitutive modeling for high-temperature tensile deformation behavior of pure molybdenum considering strain effects. Int J Refract Met Hard Mater. 2014;45:41–7.CrossRefGoogle Scholar
  19. 19.
    Fang F, Zhou YY, Yang W. In-situ SEM study of temperature dependent tensile behavior of wrought molybdenum. Int J Refract Met Hard Mater. 2013;41:35–40.CrossRefGoogle Scholar
  20. 20.
    Tabernig B, Reheis N. Joining of molybdenum and its application. Int J Refract Met Hard Mater. 2010;28:728–33.CrossRefGoogle Scholar
  21. 21.
    Sinha VP, Prasad GJ, Hegde PV, Keswani R, Basak CB, Pal S, et al. Development, preparation and characterization of uranium molybdenum alloys for dispersion fuel application. J Alloys Compd. 2009;473:238–44.CrossRefGoogle Scholar
  22. 22.
    Murakami Y. Stress intensity factors handbook. Japan: Pergamon Press; 1987.Google Scholar
  23. 23.
    Burch JM, Tokarski JMJ. Production of multi beam fringes from photographic scatters. Opt Acta. 1968;15(2):101–11.CrossRefGoogle Scholar
  24. 24.
  25. 25.
    Jin H, Lu WY, Haldar S, Bruck HA. Microscale characterization of granular deformation near a crack tip. J Mater Sci. 2011;46:6596–602.CrossRefGoogle Scholar
  26. 26.
    Ghadbeigi H, Pinna C, Celotto S. Quantitative strain analysis of the large deformation at the scale of microstructure: comparison between digital image correlation and microgrid techniques. Exp Mech. 2012;52:1483–92.CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics and Technology 2018

Authors and Affiliations

  • Chunwang Zhao
    • 1
    • 2
  • Wencai Li
    • 1
  • Jijun Li
    • 1
  • Yongxiang Li
    • 3
  • Quanlong Liu
    • 1
  • Lifu Wang
    • 1
  • Qingyu Hou
    • 1
  • Yongming Xing
    • 1
  1. 1.College of ScienceInner Mongolia University of TechnologyHohhotChina
  2. 2.College of Arts and SciencesShanghai Maritime UniversityShanghaiChina
  3. 3.School of Physical Science and TechnologyInner Mongolia UniversityHohhotChina

Personalised recommendations