Acta Mechanica Solida Sinica

, Volume 21, Issue 6, pp 483–490 | Cite as

Wave propagation in piezoelectric/piezomagnetic layered periodic composites

  • Yu Pang
  • Jinxi Liu
  • Yuesheng Wang
  • Daining Fang


This paper is concerned with the dynamic behaviors of wave propagation in layered periodic composites consisting of piezoelectric and piezomagnetic phases. The dispersion relations of Lamb waves are derived. Dispersion curves and displacement fields are calculated with different piezoelectric volume fractions. Numerical results for BaTiO3/CoFe2 O4 composites show that the dispersion curves resemble the symmetric Lamb waves in a plate. Exchange between the longitudinal (i.e. thickness) mode and coupled mode takes place at the crossover point between dispersion curves of the first two branches. With the increase of BaTiO3 volume fraction, the crossover point appears at a lower wave number and wave velocity is higher. These findings are useful for magnetoelectric transducer applications.

Key words

piezoelectric/piezomagnetic composite layered periodic structure wave dispersion behavior 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Van Suchtelen, J., Product properties: A new application of composite materials. Philips Research Reports, 1972, 27: 28–37.Google Scholar
  2. [2]
    Van Denboomgaard, J., et al., In situ grown eutectic magnetoelectric composite-material—1. Composition and unidirectional solidification. Journal of Materials Science, 1974, 9: 1705–1709.CrossRefGoogle Scholar
  3. [3]
    Van Run, A.M.J.G., Terrell, D.R. and Scholing, J.H., In situ grown eutectic magnetoelectric composite-material—2. Physical-properties. Journal of Materials Science, 1974, 9: 1710–1714.CrossRefGoogle Scholar
  4. [4]
    Van Denboomgaard, J., Van Run, A.M.J.G. and Van Suchtelen, J., Piezoelectric-piezomagnetic composites with magnetoelectric effect. Ferroelectrics, 1976, 14: 727–728.CrossRefGoogle Scholar
  5. [5]
    Fiebig, M., Revival of the magnetoelectric effect. Journal of Physics D-Applied Physics, 2005, 38: R123–R152.CrossRefGoogle Scholar
  6. [6]
    Nan, C.W., Bichurin, M.I., Dong, S.X., Viehland, D. and Srinvasan, G., Multiferroic magnetoelectric composites: Historical perspective, status, and future directions. Journal of Applied Physics, 2008, 103: 031101.CrossRefGoogle Scholar
  7. [7]
    Alshits, V.I., DarinskiI, A.N. and Lothe, J., On the existence of surface-waves in half-infinite anisotropic elastic media with piezoelectric and piezomagnetic properties. Wave Motion, 1992, 16: 265–283.CrossRefGoogle Scholar
  8. [8]
    Soh, A.K. and Liu, J.X., Interfacial shear horizontal waves in a piezoelectric-piezomagnetic bi-material. Philosophical Magazine Letters, 2006, 81: 31–35.CrossRefGoogle Scholar
  9. [9]
    Wang, B.L., Mai, Y.W. and Niraula, O.P., A horizontal shear surface wave in magnetoelectroelastic materials. Philosophical Magazine Letters, 2007, 87: 53–58.CrossRefGoogle Scholar
  10. [10]
    Liu, J.X., Fang, D.N. and Liu, X.L., A shear horizontal surface wave in magnetoelectric materials. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2007, 54: 1287–1289.CrossRefGoogle Scholar
  11. [11]
    Du, J.K., Jin, X.Y. and Wang, J., Love wave propagation in layered magneto-electro-elastic structures. Science in China Series G-Physics Mechanics & Astronomy, 2008, 51: 617–631.CrossRefGoogle Scholar
  12. [12]
    Liu, J.X., Fang, D.N., Wei, W.Y. and Zhao, X.F., Love waves in layered piezoelectric/piezomagnetic structures. Journal of Sound and Vibrations, 2008, 315: 146–156.CrossRefGoogle Scholar
  13. [13]
    Pang, Y., Wang, Y.S., Liu, J.X. and Fang, D.N., Reflection and refraction of plane waves at the interface between piezoelectric and piezomagnetic media. International Journal of Engineering Science, 2008, 46: 1098–1110. [DOI:10.1016/j.ijengsci.2008.04.006]MathSciNetCrossRefGoogle Scholar
  14. [14]
    Wang, Y.Z., Li, F.M., Huang, W.H., Jiang, X.A., Wang, Y.S. and Kishimoto, K., Wave band gaps in two-dimensional piezoelectric/piezomagnetic phononic crystals. International Journal of Solids and Structures, 2008, 45: 4203–4210.CrossRefGoogle Scholar
  15. [15]
    Chen, J.Y., Pan, E. and Chen, H.L., Wave propagation in magneto-electro-elastic multilayered plates. International Journal of Solids and Structures, 2007, 44: 1073–1085.CrossRefGoogle Scholar
  16. [16]
    Pang, Y., Liu, J.X., Wang, Y.S. and Zhao, X.F., Propagation of Rayleigh-type surface waves in a transversely isotropic piezoelectric layer on a piezomagnetic half-Space. Journal of Applied Physics, 2008, 103: 074901–8.CrossRefGoogle Scholar
  17. [17]
    Du, J.K., Shen, Y.P. and Tian, W.P., Anti-plane shear waves scattering from a partially debonded magnetoelectro-elastic circular cylindrical inhomogeneity. Acta Mechanica Solida Sinica, 2004, 17: 1–11.Google Scholar
  18. [18]
    Liang, J. Scattering of harmonic anti-plane shear stress waves by a crack in functionally graded piezoelectric/piezomagnetic materials. Acta Mechanica Solida Sinica, 2007, 20: 75–86.CrossRefGoogle Scholar
  19. [19]
    Zhang, Q.M. and Geng, X.C., Dynamic modeling of piezoceramic polymer composite with 2–2 connectivity, Journal of Applied Physics, 1994, 76: 6014–6016.CrossRefGoogle Scholar
  20. [20]
    Geng, X.C. and Zhang, Q.M., Evaluation of piezocomposites for ultrasonic transducer application-Influence of the unit cell dimensions and the properties of constituents on the performance of 2–2 piezocomposites. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1997, 44: 857–872.CrossRefGoogle Scholar
  21. [21]
    Shui,Y.G. and Xue,Q., The piezoelectric coupling of 2–2 composite transducers. IEEE Ultrasonics Symposium, 1995: 929–932.Google Scholar
  22. [22]
    Lee, J.S., James, G., Boyd, I.V. and Lagoudas, D.C., Effective properties of three-phase electro-magneto-elastic composites. International Journal of Engineering Science, 2005, 43: 790–825.MathSciNetCrossRefGoogle Scholar
  23. [23]
    Liu, T. and Chue, C.H., On the singularities in a biomaterial magneto-electro-elastic composite wedge under antiplane deformation. Composite Structures, 2006, 72: 254–265.CrossRefGoogle Scholar
  24. [24]
    Ramirez F., Heyliger, P.R. and Pan, E., Free vibration response of two-dimensional magneto-electro-elastic multilayered plates. Journal of Sound and Vibration, 2006, 292: 626–644.CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics and Technology 2008

Authors and Affiliations

  • Yu Pang
    • 1
  • Jinxi Liu
    • 2
  • Yuesheng Wang
    • 1
  • Daining Fang
    • 3
  1. 1.Insitute of Engineering MechanicsBeijing Jiaotong UniversityBeijingChina
  2. 2.Department of Engineering MechanicsShijiazhuang Railway InstituteShijiazhuangChina
  3. 3.Department of Engineering MechanicsTsinghua UniversityBeijingChina

Personalised recommendations