Skip to main content

Advertisement

Log in

Application of parametric derivation method to the calculation of Peierls energy and Peierls stress in lattice theory

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

Applying the parametric derivation method, Peierls energy and Peierls stress are calculated with a non-sinusoidal force law in the lattice theory, while the results obtained by the power-series expansion according to sinusoidal law can be deduced as a limiting case of non-sinusoidal law. The simplified expressions of Peierls energy and Peierls stress are obtained for the limit of wide and narrow. Peierls energy and Peierls stress decrease monotonically with the factor of modification of force law. Present results can be used expediently for prediction of the correct order of magnitude of Peierls stress for materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Srinivasan, S.G., Liao, X.Z. and Baskes, M.I. et al., Compact and dissocated dislocation in aluminum: implications for deformation. Physical Review Letters, 2005, 94: 125502.

    Article  Google Scholar 

  2. Schoeck, G., The Peierls model: progress and limitations. Materials Science and Engineering A, 2005, 400: 7–17.

    Article  Google Scholar 

  3. Schoeck, G., Peierls energy of dislocations: a critical assessment. Physical Review Letters, 1999, 82(11): 2310–2313.

    Article  Google Scholar 

  4. Masayasu, M. and Fujiwara, T., Ab initio calculation of Peierls stress in silicon. Physical Review B, 2001, 63: 045206.

    Article  Google Scholar 

  5. Nabarro, F.R.N., Fifty-year study of the Peierls-Nabarro stress. Materials Science and Engineering A, 1997, 234: 67–76.

    Article  Google Scholar 

  6. Wan, Q., Tian, X.G. and Shen, Y.P., Dynamic characteristics of edge dislocation in bcc metals by molecular dynamics. Acta Mechanica Solida Sinica, 2004, 25(3): 103–106.

    Google Scholar 

  7. Peierls, R., The size of dislocation. Proceedings of the Physical Society, 1940, 52: 34–37.

    Article  Google Scholar 

  8. Nabarro, F.R.N., Dislocation in a simple cubic lattice. Proceedings of the Physical Society, 1947, 59: 256–272.

    Article  Google Scholar 

  9. Foreman, A.J., Jaswon, M.A. and Wood, J.K., Factors controlling dislocation width. Proceedings of the Physical Society, 1951, 64: 156–163.

    Article  Google Scholar 

  10. Huntington, H.B. Modification of the Peierls-Nabarro model for edge dislocation core. Proceedings of the Physical Society, 1955, 68: 1043–1048.

    Article  Google Scholar 

  11. Wang, J.N., A new modification of the fumulation of Peierls stress. Acta Material, 1996, 44(4): 1541–1546.

    Article  Google Scholar 

  12. Joos, B. and Duesbery, M.S., The Peierls stress of dislocations: an analytic formula. Physiscal Review Letters, 1997, 78(2): 266–269.

    Article  Google Scholar 

  13. Lu, G., Kioussis, N. and Bulatov, V. et al., The Peierls-Nabarro model revisited. Philosophical Magazine Letters, 2000, 80(10): 675–682.

    Article  Google Scholar 

  14. Wang, S.F., Dislocation energy and Peierls stress: a rigorous calculation from the lattice theory. Chinese Physics, 2006, 15(6): 1301–1309.

    Article  Google Scholar 

  15. Wang, S.F., Lattice theory for structure of dislocations in a two-dimensional triangular crystal. Physical Review B, 2002, 65: 094111.

    Article  Google Scholar 

  16. Wang, S.F., Wu, X.Z. and Wang, Y.F., Variational principle for dislocation equation in lattice theory. Physica Scripta, 2007, 76: 593–596.

    Article  Google Scholar 

  17. Wang, S.F., From discreteness to continuity: dislocation equation for two-dimensional triangular lattice. Chinese Physics Letter, 2007, 24(1): 143–146.

    Article  Google Scholar 

  18. Yan, J.A., Wang, C.Y. and Wang, S.Y., Generalized-stacking-fault energy and dislocation properties in bcc Fe: a first-principles study. Physical Review B, 2004, 70: 174015.

    Google Scholar 

  19. Joos, B., Ren, Q. and Duesbery, M.S., Peierls-Nabarro model of dislocations in silicon with generalized stacking-fault restoring forces. Physical Review B, 1994, 52(9): 5890–5898.

    Article  Google Scholar 

  20. Zhou, S.J., Carlsson, A.E. and Thomson, R., Dislocation core-core interaction and Peierls stress in a modelhexagonal lattice. Physical Review B, 1994, 49(10): 6451–6457.

    Article  Google Scholar 

  21. Joos, B., Ren, Q. and Duesbery, M.S., Test of the Peierls-Nabarro model for dislocation is sillicon. Physical Review B, 1995, 52(18): 13223–13228.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaozhi Wu.

Additional information

Project supported by the National Natural Science Foundation of China (No.10774196), the Science Foundation Project of CQ CSTC (No.2006BB4156) and Chongqing University Postgraduates’ Science and Innovation Fund (No.2007A1A0030240).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, X., Wang, S. Application of parametric derivation method to the calculation of Peierls energy and Peierls stress in lattice theory. Acta Mech. Solida Sin. 20, 363–368 (2007). https://doi.org/10.1007/s10338-007-0743-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10338-007-0743-8

Key words

Navigation