Acta Mechanica Solida Sinica

, Volume 20, Issue 4, pp 363–368 | Cite as

Application of parametric derivation method to the calculation of Peierls energy and Peierls stress in lattice theory

Article

Abstract

Applying the parametric derivation method, Peierls energy and Peierls stress are calculated with a non-sinusoidal force law in the lattice theory, while the results obtained by the power-series expansion according to sinusoidal law can be deduced as a limiting case of non-sinusoidal law. The simplified expressions of Peierls energy and Peierls stress are obtained for the limit of wide and narrow. Peierls energy and Peierls stress decrease monotonically with the factor of modification of force law. Present results can be used expediently for prediction of the correct order of magnitude of Peierls stress for materials.

Key words

Peierls energy Peierls stress parametric derivation method lattice theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Srinivasan, S.G., Liao, X.Z. and Baskes, M.I. et al., Compact and dissocated dislocation in aluminum: implications for deformation. Physical Review Letters, 2005, 94: 125502.CrossRefGoogle Scholar
  2. [2]
    Schoeck, G., The Peierls model: progress and limitations. Materials Science and Engineering A, 2005, 400: 7–17.CrossRefGoogle Scholar
  3. [3]
    Schoeck, G., Peierls energy of dislocations: a critical assessment. Physical Review Letters, 1999, 82(11): 2310–2313.CrossRefGoogle Scholar
  4. [4]
    Masayasu, M. and Fujiwara, T., Ab initio calculation of Peierls stress in silicon. Physical Review B, 2001, 63: 045206.CrossRefGoogle Scholar
  5. [5]
    Nabarro, F.R.N., Fifty-year study of the Peierls-Nabarro stress. Materials Science and Engineering A, 1997, 234: 67–76.CrossRefGoogle Scholar
  6. [6]
    Wan, Q., Tian, X.G. and Shen, Y.P., Dynamic characteristics of edge dislocation in bcc metals by molecular dynamics. Acta Mechanica Solida Sinica, 2004, 25(3): 103–106.Google Scholar
  7. [7]
    Peierls, R., The size of dislocation. Proceedings of the Physical Society, 1940, 52: 34–37.CrossRefGoogle Scholar
  8. [8]
    Nabarro, F.R.N., Dislocation in a simple cubic lattice. Proceedings of the Physical Society, 1947, 59: 256–272.CrossRefGoogle Scholar
  9. [9]
    Foreman, A.J., Jaswon, M.A. and Wood, J.K., Factors controlling dislocation width. Proceedings of the Physical Society, 1951, 64: 156–163.CrossRefGoogle Scholar
  10. [10]
    Huntington, H.B. Modification of the Peierls-Nabarro model for edge dislocation core. Proceedings of the Physical Society, 1955, 68: 1043–1048.CrossRefGoogle Scholar
  11. [11]
    Wang, J.N., A new modification of the fumulation of Peierls stress. Acta Material, 1996, 44(4): 1541–1546.CrossRefGoogle Scholar
  12. [12]
    Joos, B. and Duesbery, M.S., The Peierls stress of dislocations: an analytic formula. Physiscal Review Letters, 1997, 78(2): 266–269.CrossRefGoogle Scholar
  13. [13]
    Lu, G., Kioussis, N. and Bulatov, V. et al., The Peierls-Nabarro model revisited. Philosophical Magazine Letters, 2000, 80(10): 675–682.CrossRefGoogle Scholar
  14. [14]
    Wang, S.F., Dislocation energy and Peierls stress: a rigorous calculation from the lattice theory. Chinese Physics, 2006, 15(6): 1301–1309.CrossRefGoogle Scholar
  15. [15]
    Wang, S.F., Lattice theory for structure of dislocations in a two-dimensional triangular crystal. Physical Review B, 2002, 65: 094111.CrossRefGoogle Scholar
  16. [16]
    Wang, S.F., Wu, X.Z. and Wang, Y.F., Variational principle for dislocation equation in lattice theory. Physica Scripta, 2007, 76: 593–596.CrossRefGoogle Scholar
  17. [17]
    Wang, S.F., From discreteness to continuity: dislocation equation for two-dimensional triangular lattice. Chinese Physics Letter, 2007, 24(1): 143–146.CrossRefGoogle Scholar
  18. [18]
    Yan, J.A., Wang, C.Y. and Wang, S.Y., Generalized-stacking-fault energy and dislocation properties in bcc Fe: a first-principles study. Physical Review B, 2004, 70: 174015.Google Scholar
  19. [19]
    Joos, B., Ren, Q. and Duesbery, M.S., Peierls-Nabarro model of dislocations in silicon with generalized stacking-fault restoring forces. Physical Review B, 1994, 52(9): 5890–5898.CrossRefGoogle Scholar
  20. [20]
    Zhou, S.J., Carlsson, A.E. and Thomson, R., Dislocation core-core interaction and Peierls stress in a modelhexagonal lattice. Physical Review B, 1994, 49(10): 6451–6457.CrossRefGoogle Scholar
  21. [21]
    Joos, B., Ren, Q. and Duesbery, M.S., Test of the Peierls-Nabarro model for dislocation is sillicon. Physical Review B, 1995, 52(18): 13223–13228.CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics and Technology 2007

Authors and Affiliations

  1. 1.Institute for Structure and FunctionChongqing UniversityChongqingChina

Personalised recommendations