Acta Mechanica Solida Sinica

, Volume 20, Issue 3, pp 211–218 | Cite as

An exact analysis of forced thickness-twist vibrations of multi-layered piezoelectric plates

  • Hongping Hu
  • Ziguang Chen
  • Jiashi Yang
  • Yuantai Hu
Article

Abstract

This paper deals with the thickness-twist vibration of a multi-layered rectangular piezoelectric plate of crystals of 6 mm symmetry or polarized ceramics. An exact solution is obtained from the three-dimensional equations of linear piezoelectricity. The solution is useful to the understanding and design of composite piezoelectric devices. A piezoelectric resonator, a piezoelectric transformer, and a piezoelectric generator are analyzed as examples.

Key words

piezoelectricity plate resonator transformer generator 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Mindlin, R.D., Thickness-twist vibrations of an infinite, monoclinic, crystal plate. International Journal of Solids and Structures, 1965, 1: 141–145.CrossRefGoogle Scholar
  2. [2]
    Mindlin, R.D., Bechmann’s number for harmonic overtones of thickness/twist vibrations of rotated Y-cut quartz plates. The Journal of the Acoustical Sociaty of America, 1967, 41: 969–973.CrossRefGoogle Scholar
  3. [3]
    Pearman, G.T., Thickness-twist vibrations in beveled AT-cut quartz plates. The Journal of the Acoustical Sociaty of America, 1968, 45: 928–934.CrossRefGoogle Scholar
  4. [4]
    Bleustein, J., Thickness-twist and face-shear vibrations of a contoured crystal plate. International Journal of Solids and Structures, 1966, 2: 351–360.CrossRefGoogle Scholar
  5. [5]
    Bleustein, J.L., Some simple modes of wave propagation in an infinite piezoelectric plate. The Journal of the Acoustical Sociaty of America, 1969, 45: 614–620.CrossRefGoogle Scholar
  6. [6]
    Yang, J.S., Shear horizontal vibrations of a piezoelectric/ferroelectric wedge. Acta Mechanica, 2004, 173: 13–17.CrossRefGoogle Scholar
  7. [7]
    Pang, W., Zhang, H. and Kim, E.S., Micromachined acoustic wave resonator isolated from substrate. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2005, 52: 1239–1246.CrossRefGoogle Scholar
  8. [8]
    Link, M., Schreiter, M., Weber, J., Primig, R., Pitzer, D. and Cabl, R., Solidly mounted ZnO shear mode film bulk acoustic wave resonators for sensing applications in liquids. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2006, 53: 492–496.CrossRefGoogle Scholar
  9. [9]
    Martin, F., Jan, M.E., ReyMermet, S., Belgacem, B., Su, D., Cantoni, M. and Muralt, P., Shear mode coupling and tilted grain growth of AlN thin films in BAW resonators. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2006, 53: 1339–1343.CrossRefGoogle Scholar
  10. [10]
    Tiersten, H.F., Linear Piezoelectric Plate Vibrations, Plenum, New York, 1969.Google Scholar
  11. [11]
    Mansfeld, G.D., New types of BAW composite resonators and their properties//Proc. IEEE Ultrasoncis Symp., 1995, 917–920.Google Scholar
  12. [12]
    Mansfeld, G.D., Modern state and perspective of bulk acoustic wave composite resonators//Proc. Joint EFTF-IEEE International Frequency Control Symposium, 1999, 843–846.Google Scholar
  13. [13]
    Makkonen, T., Holappa, A., Ella, J. and Salomaa, M.M., Finite element simulation of thin-film composite BAW resonators. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2001, 48: 1241–1258.CrossRefGoogle Scholar
  14. [14]
    Stewart, J.T. and Yong, Y.K., Exact analysis of the propagation of acoustic waves in multilayered anisotropic piezoelectric plates. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1994, 41: 375–390.CrossRefGoogle Scholar
  15. [15]
    Zhang, Z. and Yong, Y.K., Numerical analysis of thickness shear thin film piezoelectric resonators using a laminated plate theory. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1995, 42: 734–746.CrossRefGoogle Scholar
  16. [16]
    Yao, L.Q., Lu, L., Wang, Z.H., Zhu, W.G. and Dai, Y., Exact solution of multilayered piezoelectric diaphragms. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2003, 50: 1262–1271.CrossRefGoogle Scholar
  17. [17]
    Yang, J.S., Batra, R.C. and Liang, X.Q., The cylindrical bending vibration of a laminated elastic plate due to piezoelectric actuators. Smart Materials and Structures, 1994, 3: 485–493.CrossRefGoogle Scholar
  18. [18]
    Batra, R.C., Liang, X.Q. and Yang, J.S., Shape control of a vibrating simply supported rectangular plate by using piezoelectric actuators. AIAA Journal, 1996, 34: 116–122.CrossRefGoogle Scholar
  19. [19]
    Batra, R.C., Liang, X.Q. and Yang, J.S., The vibration of a simply supported rectangular elastic plate due to piezoelectric actuators. International Journal of Solids and Structures, 1996, 33: 1597–1618.CrossRefGoogle Scholar
  20. [20]
    Vel, S.S. and Batra, R.C., Three-dimensional analytical solution for hybrid multilayered piezoelectric plates. ASME Journal of Applied Mechanics, 2000, 67: 558–567.CrossRefGoogle Scholar
  21. [21]
    Vel, S.S. and Batra, R.C., Exact solution for rectangular sandwich plates with embedded piezoelectric shear resonators. AIAA Journal, 2001, 39: 1363–1373.CrossRefGoogle Scholar
  22. [22]
    Baillargeon, B.P. and Vel, S.S., Exact solution for the vibration and active damping of composite plates with piezoelectric shear actuators. Journal of Sound and Vibration, 2005, 282: 781–804.CrossRefGoogle Scholar
  23. [23]
    Yang, J.S. and Guo, S.H., Thickness-twist modes in a rectangular piezoelectric resonator of hexagonal crystals. Applied Physics Letters, 2006, 88: 153506.CrossRefGoogle Scholar
  24. [24]
    Yang, J.S., An Introduction to the Theory of Piezoelectricity, Springer, New York, 2005.MATHGoogle Scholar
  25. [25]
    Bleustein, J.L., A new surface wave in piezoelectric materials. Applied Physics Letters, 1968, 13: 412–413.CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics and Technology 2007

Authors and Affiliations

  • Hongping Hu
    • 1
  • Ziguang Chen
    • 2
  • Jiashi Yang
    • 1
    • 3
  • Yuantai Hu
    • 1
  1. 1.Department of Mechanics, School of Civil Engineering and MechanicsHuazhong University of Science and TechnologyWuhanChina
  2. 2.Institute of Mechanics and Sensing Technology, School of Civil Engineering and ArchitectureCentral South UniversityChangshaChina
  3. 3.Department of Engineering MechanicsUniversity of NebraskaLincolnUSA

Personalised recommendations