Skip to main content
Log in

An equivalent continuum method of lattice structures

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

An equivalent continuum method is developed to analyze the effective stiffness of three-dimensional stretching dominated lattice materials. The strength and three-dimensional plastic yield surfaces are calculated for the equivalent continuum. A yielding model is formulated and compared with the results of other models. The bedding-in effect is considered to include the compliance of the lattice joints. The predicted stiffness and strength are in good agreement with the experimental data, validating the present model in the prediction of the mechanical properties of stretching dominated lattice structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Deshpande, V.S., Ashby, M.F. and Fleck, N.A., Foam topology bending versus stretching dominated architectures. Acta Materilia, Vol.49, 2001a, 1035–1040.

    Article  Google Scholar 

  2. Ashby, M.F., Evans, A.G., Fleck, N.A., Gibson, L.J., Hutchinson, J.W. and Wadley, H.N.G., Metal Foams: A Design Guide. Boston: Butterworth-Heinemann, 2000.

    Google Scholar 

  3. Evans, A.G., Lightweight materials and structures. MRS Bulletin, Vol.26, 2001, 790–797.

    Article  Google Scholar 

  4. Evans, A.G., Hutchinson, J.W., Fleck, N.A., Ashby, M.F. and Wadley, H.N.G., The topology design of multifunctional cellular metals. Progress in Materials Science, Vol.46, 2001, 309–327.

    Article  Google Scholar 

  5. Deshpande, V.S., Fleck, N.A. and Ashby, M.F., Effective properties of the octet-truss lattice material. Journal of The Mechanics and Physics of Solids, Vol.49, 2001b, 1747–1769.

    Article  Google Scholar 

  6. Wallach, J.C. and Gibson, L.J., Mechanical behavior of a three-dimensional truss material. International Journal of Solids and Structures, Vol.38, 2001, 7181–7196.

    Article  Google Scholar 

  7. Deshpande, V.S., Fleck, N.A. and Ashby, M.F., Yield of truss core sandwich beams in 3-point bending. International Journal of Solids and Structures, Vol.38, 2001c, 6275–6305.

    Article  Google Scholar 

  8. Brittain, S.T., Sugimura, Y., Schueller, O.J.A., Evans, A.G. and Whitesides, G.M., Fabrication and mechanical performance of a mesoscale space-filling truss system. Journal of Microelectromechanical Systems, Vol.10, 2001, 113–120.

    Article  Google Scholar 

  9. Wicks, N. and Hutchinson, J.W., Optimal truss plates. International Journal of Solids and Structures, Vol.38, 2001, 5165–5183.

    Article  Google Scholar 

  10. Wicks, N. and Hutchinson, J.W., Performance of sandwich plates with truss cores. Mechanics of Materials, Vol.36, 2004, 739–751.

    Article  Google Scholar 

  11. Kooistra, G.W., Deshpande, V.S. and Wadley, H.N.G., Compressive behavior of age hardenable tetrahedral lattice truss structures made from aluminium. Acta Materialia, Vol.52, 2004, 4229–4237.

    Article  Google Scholar 

  12. Wadley, H.N.G., Fleck, N.A. and Evans, A.G., Fabrication and structural performance of periodic cellular metal sandwich structures. Composites Science and Technology, Vol.63, 2003, 2331–2343.

    Article  Google Scholar 

  13. Jensen, D.W. and Weaver, T.J., Mechanical characterization of a graphite/epoxy isotruss. Journal of Aerospace Engineering, 13, 2000, 23–35.

    Article  Google Scholar 

  14. Fan, H.L., Yang, W., Wang, B., Yan, Y., Fu, Q., Fang, D.N. and Zhuang Z., Design and manufacturing of a composite lattice structure reinforced by continuous carbon fibers. Tsinghua Science and Technology, Vol.11, No.5, 2006, 153–159.

    Article  Google Scholar 

  15. Noor, A.k., Continumm modeling of repetitive lattice structures. Applied Mechanics Review, Vol.41, 1988, 285–296

    Article  Google Scholar 

  16. Kollar, L. and Hegedus, I., Analysis and Design of Space Frames by the Continuum Method. Amsterdam: Elsevier Science, 1985.

    Google Scholar 

  17. Zhou, J., Shrotriya, P. and Soboyejo, W.O., On the deformation of aluminum lattice block structures: from struts to structures. Mechanics of Materials, Vol.36, 2004, 723–737.

    Article  Google Scholar 

  18. Ziegler, E., Accorsi, M. and Bennett, M., Continuum plate model for lattice block material. Mechanics of Materials, Vol.36, 2004, 753–766.

    Article  Google Scholar 

  19. Mohr, D., Mechanism-based multi-surface plasticity model for ideal truss lattice materials. International Journal of Solids and Structures, Vol.42, 2005, 3235–3260.

    Article  Google Scholar 

  20. Gibson, L.J. and Ashby, M.F., Cellular Solids: Structure and Properties, 2nd ed. Cambridge/UK: Cambridge University Press, 1997.

    Book  Google Scholar 

  21. Hill, R., A theory of the yielding and plastic flow of anisotropic metals. Proc. Roy. Soc. London, A193, 1948, 281–300.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Yang.

Additional information

Project supported by the Key Project of Chinese Ministry of Education (No.106015).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, H., Yang, W. An equivalent continuum method of lattice structures. Acta Mech. Solida Sin. 19, 103–113 (2006). https://doi.org/10.1007/s10338-006-0612-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10338-006-0612-x

Key words

Navigation