QbD-Enabled Stability-Indicating Assay Method for the Estimation of Linezolid in Newly Developed Gelatin Nanoparticles for Anti-tubercular Therapy

Abstract

The day-by-day increase in the novel drug delivery system market produces the utmost need to develop a reliable, robust, and accurate method. Moreover, the recent ICH (ICH Q8-Q11) guidelines recommend the use of modern systemic approaches such as quality by design (QbD) adopted for the development of robust analytical methods. Thus, the aim of the present study is to develop and validate a novel HPLC method for stability profiling after stress degradation studies of linezolid using QbD approach. The risk assessment matrix (RAM) and Taguchi orthogonal model were applied for screening of the most impacted CMAs/CMPs affecting the method performance. The 33 Box–Behnken design was employed to interpret the relationship between CMAs/CMPs and CAAs. The optimum chromatographic conditions were citrate-stabilized mobile phase methanol:water (50:50% v/v) at pH 4.0 ± 0.2 and flowrate of 1.0 mL min−1 with PDA detection at 251 nm. The stability-indicating capability of the method was verified by forced degradation studies. The method was found to be sensitive, specific, and linear in the concentration range between 5 and 30 µg mL−1 with a correlation coefficient (R2) of 0.9999. The method exhibits a high degree of accuracy, precision, and % recovery (between 99.77 and 101.2%) with LOD (0.053 µg mL−1) and LOQ (0.16 µg mL−1). The QbD-based stability-indicating method was successfully implemented for the detection of LNZ and its DPs in bulk and novel nanoparticulate dosage forms.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5

References

  1. 1.

    ICH (2009) Q8 (R2), Pharmaceutical development. 8

  2. 2.

    Senior K (2000) FDA approves first drug in new class of antibiotics. Lancet 355:1523. https://doi.org/10.1016/S0140-6736(00)02173-5

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Barrett JF (2000) Linezolid pharmacia corp. Curr Opin Investig Drugs 1:181–187

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Ament PW, Jamshed N, Horne JP (2002) Linezolid: its role in the treatment of gram-positive, drug-resistant bacterial infections. Am Fam Phys 65:663–670

    Google Scholar 

  5. 5.

    Wilcox MH (2005) Update on linezolid: the first oxazolidinone antibiotic. Expert Opin Pharmacother 6:2315–2326. https://doi.org/10.1517/14656566.6.13.2315

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Yang C, Lei H, Wang D et al (2012) In vitro activity of linezolid against clinical isolates of Mycobacterium tuberculosis, including multidrug-resistant and extensively drug-resistant strains from Beijing, China. Jpn J Infect Dis 65:240–242

    CAS  Article  PubMed Central  Google Scholar 

  7. 7.

    Singh B, Cocker D, Ryan H, Sloan DJ (2019) Linezolid for drug-resistant pulmonary tuberculosis. Cochrane Database Syst Rev 1:1–83. https://doi.org/10.1002/14651858.CD012836.pub2

    Article  Google Scholar 

  8. 8.

    Schecter GF, Scott C, True L et al (2010) Linezolid in the treatment of multidrug-resistant tuberculosis. Clin Infect Dis 50:49–55. https://doi.org/10.1086/648675

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Swaney SM, Aoki H, Ganoza MC, Shinabarger DL (1998) The oxazolidinone linezolid inhibits initiation of protein synthesis in bacteria. Antimicrob Agents Chemother 42:3251–3255

    CAS  Article  PubMed Central  Google Scholar 

  10. 10.

    Bozdogan B, Appelbaum PC (2004) Oxazolidinones: activity, mode of action, and mechanism of resistance. Int J Antimicrob Agents 23:113–119. https://doi.org/10.1016/j.ijantimicag.2003.11.003

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Flamm RK, Mendes RE, Hogan PA et al (2016) Linezolid surveillance results for the United States (LEADER surveillance program 2014). Antimicrob Agents Chemother 60:2273–2280. https://doi.org/10.1128/AAC.02803-15

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Mendes RE, Hogan PA, Streit JM et al (2015) Update on linezolid in vitro activity through the zyvox annual appraisal of potency and spectrum program, 2013. Antimicrob Agents Chemother 59:2454–2457. https://doi.org/10.1128/AAC.04784-14

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Bouza E, Muñoz P (2001) Linezolid: pharmacokinetic characteristics and clinical studies. Clin Microbiol Infect 7:75–82. https://doi.org/10.1046/j.1469-0691.2001.00061.x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Pfizer (2010) ChPL “Zyvox” linezolid—injection and tablets for oral suspension. Pfizer Drug Man 1–35

  15. 15.

    ICH (2006) Impurities in new drug products. Q3B (R2). Curr Step 4:1–5

    Google Scholar 

  16. 16.

    Cios A, Kuś K, Szymura-Oleksiak J (2013) Determination of linezolid in human serum by reversed-phase high-performance liquid chromatography with ultraviolet and diode array detection. Acta Pol Pharm 70:631–641

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Jakaria M, Clinton CD, Islam M et al (2017) In vivo sedative and hypnotic activities of methanol extract from the leaves of Jacquemontia paniculata (Burm. f.) Hallier f. in Swiss Albino mice. J Basic Clin Physiol Pharmacol. https://doi.org/10.1515/jbcpp-2016-0073

    Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Fortuna S, De Pascale G, Ragazzoni E et al (2013) Validation of a new HPLC-UV method for determination of the antibiotic linezolid in human plasma and in bronchoalveolar lavage. Biomed Chromatogr 27:1489–1496. https://doi.org/10.1002/bmc.2947

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Hara S, Uchiyama M, Yoshinari M et al (2015) A simple high-performance liquid chromatography for the determination of linezolid in human plasma and saliva. Biomed Chromatogr 29:1428–1431

    CAS  Article  PubMed Central  Google Scholar 

  20. 20.

    Wicha SG, Kloft C (2016) Simultaneous determination and stability studies of linezolid, meropenem and vancomycin in bacterial growth medium by high-performance liquid chromatography. J Chromatogr B 1028:242–248. https://doi.org/10.1016/j.jchromb.2016.06.033

    CAS  Article  Google Scholar 

  21. 21.

    Cavazos-Rocha N, Carmona-Alvarado I, Vera-Cabrera L et al (2014) HPLC Method for the simultaneous analysis of fluoroquinolones and oxazolidinones in plasma. J Chromatogr Sci 52:1281–1287. https://doi.org/10.1093/chromsci/bmu002

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Vera-Cabrera L, Daw-Garza A, Said-Fernández S et al (2008) Therapeutic effect of a novel oxazolidinone, DA-7867, in BALB/c mice infected with Nocardia brasiliensis. PLoS Negl Trop Dis 2:e289. https://doi.org/10.1371/journal.pntd.0000289

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Baietto L, D’Avolio A, Ariaudo A et al (2013) Development and validation of a new UPLC-PDA method to quantify linezolid in plasma and in dried plasma spots. J Chromatogr B 936:42–47. https://doi.org/10.1016/j.jchromb.2013.08.003

    CAS  Article  Google Scholar 

  24. 24.

    Ferrone V, Carlucci M, Cotellese R et al (2017) Development and validation of a fast micro-extraction by packed sorbent UHPLC-PDA method for the simultaneous determination of linezolid and ciprofloxacin in human plasma from patients with hospital-acquired pneumonia. Talanta 164:64–68. https://doi.org/10.1016/j.talanta.2016.11.014

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Yu H, Pan C, Xie Q et al (2016) Simultaneous determination of tedizolid and linezolid in rat plasma by ultra performance liquid chromatography tandem mass spectrometry and its application to a pharmacokinetic study. J Chromatogr B 1011:94–98. https://doi.org/10.1016/j.jchromb.2015.12.056

    CAS  Article  Google Scholar 

  26. 26.

    Saviano AM, Madruga ROG, Lourenço FR (2015) Measurement uncertainty of a UPLC stability indicating method for determination of linezolid in dosage forms. Measurement 59:1–8. https://doi.org/10.1016/j.measurement.2014.09.026

    Article  Google Scholar 

  27. 27.

    Hedaya MA, Thomas V, Abdel-Hamid ME et al (2017) A validated UPLC–MS/MS method for the analysis of linezolid and a novel oxazolidinone derivative (PH027) in plasma and its application to tissue distribution study in rabbits. J Chromatogr B 1040:89–96. https://doi.org/10.1016/j.jchromb.2016.11.034

    CAS  Article  Google Scholar 

  28. 28.

    Zander J, Maier B, Suhr A et al (2015) Quantification of piperacillin, tazobactam, cefepime, meropenem, ciprofloxacin and linezolid in serum using an isotope dilution UHPLC–MS/MS method with semi-automated sample preparation. Clin Chem Lab Med 53:781. https://doi.org/10.1515/cclm-2014-0746

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    la Marca G, Villanelli F, Malvagia S et al (2012) Rapid and sensitive LC–MS/MS method for the analysis of antibiotic linezolid on dried blood spot. J Pharm Biomed Anal 67:86–91. https://doi.org/10.1016/j.jpba.2012.04.007

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Peraman R, Bhadraya K, Padmanabha Reddy Y (2015) Analytical quality by design: a tool for regulatory flexibility and robust analytics. Int J Anal Chem 2015:1–9. https://doi.org/10.1155/2015/868727

    CAS  Article  Google Scholar 

  31. 31.

    Patil TS, Deshpande AS (2018) Development of an innovative quality by design (QbD) based stability-indicating HPLC method and its validation for clofazimine from its bulk and pharmaceutical dosage forms. Chromatographia 82:579–590. https://doi.org/10.1007/s10337-018-3660-8

    CAS  Article  Google Scholar 

  32. 32.

    Beg S, Sharma G, Katare OP et al (2015) Development and validation of a stability-indicating liquid chromatographic method for estimating olmesartan medoxomil using quality by design. J Chromatogr Sci 53:1048–1059

    CAS  Article  PubMed Central  Google Scholar 

  33. 33.

    ICH (2005) ICH Topic Q2 (R1) Validation of analytical procedures : text and methodology. Int Conf Harmon 1994:17. https://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q2_R1/Step4/Q2_R1__Guideline.pdf

Download references

Acknowledgements

We would like to thank the faculty members of SVKM’s NMIMS School of Pharmacy and Technology Management, Shirpur, India, for their support and encouragement throughout the research process.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kiran Dayaram Patil.

Ethics declarations

Conflict of interest

None declared.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PPTX 341 kb)

Supplementary file2 (DOCX 22 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Patil, K.D., Bagade, S.B. & Bonde, S.C. QbD-Enabled Stability-Indicating Assay Method for the Estimation of Linezolid in Newly Developed Gelatin Nanoparticles for Anti-tubercular Therapy. Chromatographia (2020). https://doi.org/10.1007/s10337-020-03925-9

Download citation

Keywords

  • Linezolid
  • Analytical method development
  • Stability-indicating assay method
  • Forced degradation studies
  • Quality by design (QbD)