Sensitive Determination of Imatinib Mesylate in Human Plasma Using DABCO-Based Ionic Liquid-Modified Magnetic Nanoparticles

Abstract

In this research, new DABCO-based ionic liquid-modified Fe3O4 nanoparticles (NPs) were synthesized by the quaternization reaction. Modified magnetic NPs were characterized by different techniques. The functionalized magnetic NPs were utilized as a novel sorbent for magnetic SPE of imatinib mesylate (IMA) from human plasma samples followed with UPLC–MS–MS. Effective parameters on the extraction of IMA were studied by three-level Box–Behnken experimental design under response surface methodology. Under the optimized conditions, the proposed method was validated based on the principles of Guidance for Industry Bioanalytical Method Validation by the U.S. Food and Drug Administration. The linearity of the developed method was achieved within the range of 0.7–2500 ng mL−1. The LOD and lower limit of quantification were 0.68 and 0.21 ng mL−1, respectively. Satisfactory extraction recovery values ranged from 93 to 102% for human plasma samples with relative standard deviation values lower than 5.9%. The proposed analysis method was sensitive, efficient, rapid, and practical for the determination of IMA in biological samples.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Rodríguez J, Castañeda G, Lizcano I (2018) Electrochim Acta 269:668–675. https://doi.org/10.1016/j.electacta.2018.03.051

    CAS  Article  Google Scholar 

  2. 2.

    Fornasaro S, Bonifacio A, Marangon E, Buzzo M, Toffoli G, Rindzevicius T, Schmidt MS, Sergo V (2018) Anal Chem 90:12670–12677. https://doi.org/10.1021/acs.analchem.8b02901

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Ubhayasekera SJKA, Aluthgedara W, Ek B, Bergquist J (2016) Anal Methods 8:3046–3054. https://doi.org/10.1039/C5AY02807H

    CAS  Article  Google Scholar 

  4. 4.

    Arellano C, Gandia P, Lafont T, Jongejan R, Chatelut E (2012) J Chromatogr B 907:94–100. https://doi.org/10.1016/j.jchromb.2012.09.007

    CAS  Article  Google Scholar 

  5. 5.

    Titier K, Picard S, Ducint D, Teilhet E, Moore N, Berthaud P, Mahon FX, Molimard M (2005) Ther Drug Monit 27:634–640

    CAS  Article  Google Scholar 

  6. 6.

    Roth O, Spreux-Varoquaux O, Bouchet S, Rousselot P, Castaigne S, Rigaudeau S, Raggueneau V, Therond P, Devillier P, Molimard M, Maneglier B (2010) Clin Chim Acta 411:140–146. https://doi.org/10.1016/j.cca.2009.10.007

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Moreno JM, Wojnicz A, Steegman JL, Cano-Abad MF, Ruiz-Nuño A (2013) Biomed Chromatogr 27:502–508. https://doi.org/10.1002/bmc.2819

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Qiang S, Zhang Y, Hang T, Zhang W, Yu Z, Xu Z, Wen A, Yang L (2013) J Chromatogr Sci 52:344–350. https://doi.org/10.1093/chromsci/bmt037

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Qi C, Cai Q, Zhao P, Jia X, Lu N, He L, Hou X (2016) J Chromatogr A 1449:30–38. https://doi.org/10.1016/j.chroma.2016.04.055

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Chernov’yants MS, Dolinkin AO, Khokhlov EV (2009) J Anal Chem 64:828–831. https://doi.org/10.1134/S1061934809080103

    CAS  Article  Google Scholar 

  11. 11.

    Cassiano NM, Lima VV, Oliveira RV, de Pietro AC, Cass QB (2006) Anal Bioanal Chem 384:1462–1469. https://doi.org/10.1007/s00216-005-0253-9

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Capriotti AL, La Barbera G, Piovesana S (2019) Chromatographia 82:1119–1120. https://doi.org/10.1007/s10337-019-03762-5

    CAS  Article  Google Scholar 

  13. 13.

    Capriotti AL, Cavaliere C, La Barbera G, Montone CM, Piovesana S, Laganà A (2019) Chromatographia 82:1251–1274. https://doi.org/10.1007/s10337-019-03721-0

    CAS  Article  Google Scholar 

  14. 14.

    Jalilian N, Asgharinezhad AA, Ebrahimzadeh H, Molaei K, Karami S (2018) Chromatographia 81:1569–1578. https://doi.org/10.1007/s10337-018-3612-3

    CAS  Article  Google Scholar 

  15. 15.

    Abujaber F, Zougagh M, Jodeh S, Ríos Á, Guzmán Bernardo FJ, Rodríguez Martín-Doimeadios RC (2018) Microchem J 137:490–495. https://doi.org/10.1016/j.microc.2017.12.007

    CAS  Article  Google Scholar 

  16. 16.

    Wang H, Zhang H, Wei S, Jia Q (2018) J Chromatogr A 1566:23–31. https://doi.org/10.1016/j.chroma.2018.06.053

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Liu Y, Li Y, Wei Y (2014) J Sep Sci 37:3745–3752. https://doi.org/10.1002/jssc.201400370

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Wang Y, Deng M, Jia L (2014) Microchim Acta 181:1275–1283. https://doi.org/10.1007/s00604-014-1250-5

    CAS  Article  Google Scholar 

  19. 19.

    Wei Y, Li Y, Tian A, Fan Y, Wang X (2013) J Mater Chem B 1:2066–2071. https://doi.org/10.1039/C3TB00576C

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Yamini Y, Seidi S, Latifeh F (2017) Int J Environ Anal Chem 97:1223–1236. https://doi.org/10.1080/03067319.2017.1399369

    CAS  Article  Google Scholar 

  21. 21.

    Qian L, Sun J, Hou C, Yang J, Li Y, Lei D, Yang M, Zhang S (2017) Talanta 168:174–182. https://doi.org/10.1016/j.talanta.2017.03.044

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Sahebi H, Konoz E, Ezabadi A (2019) New J Chem 43:13554–13570. https://doi.org/10.1039/C9NJ02200G

    CAS  Article  Google Scholar 

  23. 23.

    Su W-Q, Yang C, Xu D-Z (2017) Catal Commun 100:38–42. https://doi.org/10.1016/j.catcom.2017.06.018

    CAS  Article  Google Scholar 

  24. 24.

    Capriotti AL, Cavaliere C, Ferraris F, Gianotti V, Laus M, Piovesana S, Sparnacci K, Zenezini Chiozzi R, Laganà A (2018) Talanta 178:274–281. https://doi.org/10.1016/j.talanta.2017.09.010

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Stöber W, Fink A, Bohn E (1968) J Colloid Interface Sci 26:62–69. https://doi.org/10.1016/0021-9797(68)90272-5

    Article  Google Scholar 

  26. 26.

    Fattahi N, Ramazani A, Kinzhybalo V (2018) Silicon. https://doi.org/10.1007/s12633-017-9757-0

    Article  Google Scholar 

  27. 27.

    Li K, Zeng Z, Xiong J, Yan L, Guo H, Liu S, Dai Y, Chen T (2015) Colloids Surf A 465:113–123. https://doi.org/10.1016/j.colsurfa.2014.10.044

    CAS  Article  Google Scholar 

  28. 28.

    Hashkavayi AB, Raoof JB (2017) Biosens Bioelectron 91:650–657. https://doi.org/10.1016/j.bios.2017.01.025

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Panariello L, Damilos S, du Toit H, Wu G, Radhakrishnan ANP, Parkin IP, Gavriilidis A (2020) React Chem Eng 5:663–676. https://doi.org/10.1039/C9RE00469F

    CAS  Article  Google Scholar 

  30. 30.

    Konoz E, Sarrafi AHM, Sahebi H (2015) Can J Chem 94:9–14. https://doi.org/10.1139/cjc-2015-0015

    CAS  Article  Google Scholar 

  31. 31.

    Sahebi H, Pourmortazavi SM, Zandavar H, Mirsadeghi S (2019) Analyst 144:7336–7350. https://doi.org/10.1039/C9AN01654F

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Wang X, Zhang D, Liu S, Chen Y, Jia L, Wu S (2018) J Chem Eng Data 63:4114–4127. https://doi.org/10.1021/acs.jced.8b00551

    CAS  Article  Google Scholar 

  33. 33.

    Naghibi S, Sahebi H (2018) Biomed Chromatogr 32:e4082. https://doi.org/10.1002/bmc.4082

    CAS  Article  Google Scholar 

  34. 34.

    Vinicius de Faria L, Lisboa TP, Arromba de Sousa R, Gonçalves de Carvalho GS, Costa Matos MA, Matos RC (2018) Anal Methods 10:5327 5334. https://doi.org/10.1039/C8AY01696H

    Article  Google Scholar 

  35. 35.

    Shojaeimehr T, Rahimpour F, Khadivi MA, Sadeghi M (2014) J Ind Eng Chem 20:870–880. https://doi.org/10.1016/j.jiec.2013.06.017

    CAS  Article  Google Scholar 

  36. 36.

    Pourmortazavi SM, Sahebi H, Zandavar H, Mirsadeghi S (2019) Compos B Eng 175:107130. https://doi.org/10.1016/j.compositesb.2019.107130

    CAS  Article  Google Scholar 

  37. 37.

    Khani R, Sobhani S, Beyki MH, Miri S (2018) Ecotoxicol Environ Saf 150:54–61. https://doi.org/10.1016/j.ecoenv.2017.12.018

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Brodie RR, Hill HM (2002) Chromatographia 55:S91–S94. https://doi.org/10.1007/BF02493361

    CAS  Article  Google Scholar 

  39. 39.

    Matuszewski BK, Constanzer ML, Chavez-Eng CM (2003) Anal Chem 75:3019–3030. https://doi.org/10.1021/ac020361s

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Ferrer Amate C, Unterluggauer H, Fischer RJ, Fernández-Alba AR, Masselter S (2010) Anal Bioanal Chem 397:93–107. https://doi.org/10.1007/s00216-010-3526-x

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Ye L, Chen J, Li S-l, Zhu Y-l, Xie S, Du X (2020) J Pharm Biomed Anal 177:112850. https://doi.org/10.1016/j.jpba.2019.112850

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Zhang Y, Qiang S, Yu Z, Zhang W, Xu Z, Yang L, Wen A, Hang T (2013) J Chromatogr Sci 52:344–350. https://doi.org/10.1093/chromsci/bmt037

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Zhuang W, Qiu H-B, Chen X-M, Yuan X-H, Yang L-F, Sun X-W, Zhou X-J, Huang M, Wang X-D, Zhou Z-W (2017) Biomed Chromatogr 31:e4022. https://doi.org/10.1002/bmc.4022

    CAS  Article  Google Scholar 

  44. 44.

    Xu RA, Lin Q, Qiu X, Chen J, Shao Y, Hu G, Lin G (2019) J Pharm Biomed Anal 166:6–12. https://doi.org/10.1016/j.jpba.2018.12.036

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Tehran Central Branch of Islamic Azad University.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Elaheh Konoz.

Ethics declarations

Conflict of interest

The authors declared that no conflict of interest exists in the submission of this manuscript.

Ethical approval

This is not a clinical study on humans with an ethics committee. Voluntary healthy donors (who signed a questionnaire authorizing the use of their blood bag for research purposes) donate blood to the Iranian Blood Transfusion Organization (IBTO). According to the IAUCTB's official request from the Tehran Blood Transfusion Agency, this agency supplies IAUCTB researchers with frozen plasma samples. It should be noted that IBTO ensures the traceability of laboratory-product donors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 878 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sahebi, H., Konoz, E., Ezabadi, A. et al. Sensitive Determination of Imatinib Mesylate in Human Plasma Using DABCO-Based Ionic Liquid-Modified Magnetic Nanoparticles. Chromatographia (2020). https://doi.org/10.1007/s10337-020-03923-x

Download citation

Keywords

  • Magnetic nanoparticles
  • Human plasma analysis
  • Imatinib mesylate
  • Magnetic solid-phase extraction
  • UPLC–MS–MS