Skip to main content
Log in

Rational Rubber Extraction and Simultaneous Determination of Rubber Content and Molecular Weight Distribution in Taraxacum kok-saghyz Rodin by Size-Exclusion Chromatography

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Taraxacum kok-saghyz Rodin (TKS) is a potential nature rubber source crop. To extract rubber from TKS effectively and quantitate the TKS rubber accurately, we developed a method that can simultaneously determine the rubber content and molecular weight distribution (MWD) of TKS by size-exclusion chromatography (SEC). The solvent types and rubber extraction schemes for sample pretreatment were discussed. The results indicated that the indirect ultrasonic method of extracting rubber from TKS roots required much shorter extraction time than conventional extraction method, and the scheme did not affect the characterization of MWD. In addition, SEC can be used for TKS rubber quantification with a limit of detection of 0.03 mg mL−1, and the intra-day and inter-day precision were 2.31% and 5.24%, respectively. The MWD of TKS rubber demonstrated a unimodal distribution. This developed method has been applied to the determination of real-life samples successfully.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bell JL, Burke IC, Neff MM (2015) Genetic and biochemical evaluation of natural rubber from Eastern Washington prickly lettuce (Lactuca serriola L.). J Agric Food Chem 63(2):593–602

    Article  CAS  PubMed  Google Scholar 

  2. Ahrends A, Hollingsworth PM, Ziegler AD, Fox JM, Chen H, Su Y et al (2015) Current trends of rubber plantation expansion may threaten biodiversity and livelihoods. Glob Environ Change 34:48–58

    Article  Google Scholar 

  3. van Beilen JB, Poirier Y (2007) Establishment of new crops for the production of natural rubber. Trends Biotechnol 25(11):522–529

    Article  CAS  PubMed  Google Scholar 

  4. Mooibroek H, Cornish K (2000) Alternative sources of natural rubber. Appl Microbiol Biotechnol 53:355–365

    Article  CAS  PubMed  Google Scholar 

  5. Liu G, Zhang X, Zhang T, Zhang J, Zhang P, Wang W (2017) Determination of the content of Eucommia ulmoides gum by variable temperature fourier transform infrared spectrum. Polym Test 63:582–586

    Article  CAS  Google Scholar 

  6. Ramirez-Cadavid DA, Cornish K, Michel FC (2017) Taraxacum kok-saghyz (TK): compositional analysis of a feedstock for natural rubber and other bioproducts. Ind Crops Prod 107:624–640

    Article  CAS  Google Scholar 

  7. Stolze A, Wanke A, van Deenen N, Geyer R, Pruefer D, Gronover CS (2017) Development of rubber-enriched dandelion varieties by metabolic engineering of the inulin pathway. Plant Biotechnol J 15(6):740–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Arias M, Herrero J, Ricobaraza M, Hernandez M, Ritter E (2016) Evaluation of root biomass, rubber and inulin contents in nine Taraxacum koksaghyz Rodin populations. Ind Crops Prod 83:316–321

    Article  CAS  Google Scholar 

  9. Kreuzberger M, Hahn T, Zibek S, Schiemann J, Thiele K (2016) Seasonal pattern of biomass and rubber and inulin of wild Russian dandelion (Taraxacum koksaghyz L. Rodin) under experimental field conditions. Eur J Agron 80:66–77

    Article  CAS  Google Scholar 

  10. Ramirez-Cadavida DA, Valles-Ramireza S, Cornish K, Michel FC (2018) Simultaneous quantification of rubber, inulin, and resins in Taraxacum koksaghyz roots by sequential solvent extraction. Ind Crops Prod 122:647–656

    Article  CAS  Google Scholar 

  11. Kirschner J, Štěpánek J, Černý T, De Heer P, van Dijk PJ (2012) Available ex situ germplasm of the potential rubber crop Taraxacum koksaghyz belongs to a poor rubber producer, T. brevicorniculatum (Compositae–Crepidinae). Genet Resour Crop Evolut 60(2):455–471

    Article  Google Scholar 

  12. Krickl S, Touraud D, Kunz W (2017) Investigation of ethanolamine stabilized natural rubber latex from Taraxacum kok-saghyz and from Hevea brasiliensis using zeta-potential and dynamic light scattering measurements. Ind Crops Prod 103:169–174

    Article  CAS  Google Scholar 

  13. Buranov AU, Elmuradov BJ (2010) Extraction and characterization of latex and natural rubber from rubber-bearing plants. J Agric Food Chem 58(2):734–743

    Article  CAS  PubMed  Google Scholar 

  14. Musto S, Barbera V, Maggio M, Mauro M, Guerra G, Galimberti M (2016) Crystallinity and crystalline phase orientation of poly(1,4-cis-isoprene) from Hevea brasiliensis and Taraxacum kok-saghyz. Polym Adv Technol 27(8):1082–1090

    Article  CAS  Google Scholar 

  15. Schloman WW, GarrotDJ Ray DT (1986) Water stress and seasonal effects on rubber quality in irrigated guayule. J Agrie Food Chem 34:683–685

    Article  CAS  Google Scholar 

  16. Veatch-Blohm ME, Ray DT, McCloskey WB (2006) Water-stress-induced changes in resin and rubber concentration and distribution in greenhouse-grown guayule. Agron J 98(3):766

    Article  Google Scholar 

  17. Takeno S, Bamba T, Nakazawa Y, Fukusaki E, Okazawa A, Kobayashi A (2008) A high-throughput and solvent-free method for measurement of natural polyisoprene content in leaves by fourier transform near infrared spectroscopy. J Biosci Bioeng 106(6):537–540

    Article  CAS  PubMed  Google Scholar 

  18. Suchat S, Pioch D, Palu S, Tardan E, van Loo EN, Davrieux F (2013) Fast determination of the resin and rubber content in Parthenium argentatum biomass using near infrared spectroscopy. Ind Crops Prod 45:44–51

    Article  CAS  Google Scholar 

  19. Takeno S, Bamba T, Nakazawa Y, Fukusaki E, Okazawa A, Kobayashi A (2008) Quantification of trans-1,4-polyisoprene in Eucommia ulmoides by fourier transform infrared spectroscopy and pyrolysis-gas chromatography/mass spectrometry. J Biosci Bioeng 105(4):355–359

    Article  CAS  PubMed  Google Scholar 

  20. Takeno S, Bamba T, Nakazawa Y, Fukusaki E, Okazawa A, Kobayashi A (2010) High-throughput and highly sensitive analysis method for polyisoprene in plants by pyrolysis-gas chromatography/mass spectrometry. Biosci Biotechnol Biochem 74(1):13–17

    Article  CAS  PubMed  Google Scholar 

  21. Salvucci ME, Coffelt TA, Cornish K (2009) Improved methods for extraction and quantification of resin and rubber from guayule. Ind Crops Prod 30(1):9–16

    Article  CAS  Google Scholar 

  22. Guo T, Liu Y, Wei Y, Ma X, Fan Q, Ni J et al (2015) Simultaneous qualitation and quantitation of natural trans-1,4-polyisoprene from Eucommia ulmoides Oliver by gel permeation chromatography (GPC). J Chromatogr B Analyt Technol Biomed Life Sci 1004:17–22

    Article  CAS  PubMed  Google Scholar 

  23. Izumi Y, Aikawa S, Matsuda F, Hasunuma T, Kondo A (2013) Aqueous size-exclusion chromatographic method for the quantification of cyanobacterial native glycogen. J Chromatogr B Analyt Technol Biomed Life Sci 930:90–97. https://doi.org/10.1016/j.jchromb.2013.04.037

    Article  CAS  PubMed  Google Scholar 

  24. Castignolles P, Graf R, Parkinson M, Wilhelm M, Gaborieau M (2009) Detection and quantification of branching in polyacrylates by size-exclusion chromatography (SEC) and melt-state 13C NMR spectroscopy. Polymer 50(11):2373–2383

    Article  CAS  Google Scholar 

  25. Mena JA, Ramirez OT, Palomares LA (2005) Quantification of rotavirus-like particles by gel permeation chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 824(1–2):267–276. https://doi.org/10.1016/j.jchromb.2005.07.034

    Article  CAS  PubMed  Google Scholar 

  26. Mourey TH (2004) SEC molecular-weight-sensitive detection. Int J Polym Anal Charact 9(1–3):97–135

    Article  CAS  Google Scholar 

  27. Ritter A, Schmid M, Affolter S (2010) Determination of molecular weights by size exclusion chromatography (SEC)—Results of round robin tests. Polym Testing 29(8):945–952

    Article  CAS  Google Scholar 

  28. Fan W, Fan X, Tian W, Zhu X, Zhang W (2014) Differential analysis on precise determination of molecular weight of triblock copolymer using SEC/MALS and MALDI-TOF MS. Polym Testing 40:116–123

    Article  CAS  Google Scholar 

  29. Zinck P, Terrier M, Mortreux A, Visseaux M (2009) On the number-average molecular weight of poly(1,4-trans isoprene) determined by conventional GPC. Polym Testing 28(1):106–108

    Article  CAS  Google Scholar 

  30. Pearson CH, Cornish K, Rath DJ (2013) Extraction of natural rubber and resin from guayule using an accelerated solvent extractor. Ind Crops Prod 43:506–510

    Article  CAS  Google Scholar 

  31. Li SD, YuHP Peng Z, Zhu CS, Li PS (2000) Study on thermal degradation of soland gel of natural rubber. J Appl Polym Sci 75:1339–1344

    Article  CAS  Google Scholar 

  32. Hodgson-Kratky KJM, Stoffyn OM, Wolyn DJ (2017) Recurrent selection for rubber yield in Russian dandelion. J Am Soc Hortic Sci 142(6):470–475

    Article  Google Scholar 

  33. Coffelt TA, Nakayama FS, Ray DT, Cornish K, McMahan CM (2009) Post-harvest storage effects on guayule latex, rubber, and resin contents and yields. Ind Crops Prod 29(2–3):326–335. https://doi.org/10.1016/j.indcrop.2008.06.003

    Article  CAS  Google Scholar 

  34. Moreno-Vilet L, Bostyn S, Flores-Montano JL, Camacho-Ruiz RM (2017) Size-exclusion chromatography (HPLC-SEC) technique optimization by simplex method to estimate molecular weight distribution of agave fructans. Food Chem 237:833–840

    Article  CAS  PubMed  Google Scholar 

  35. Liu DZ, Gu Y, Li YZ, Zhou JH (1956) Rubber plants. Science Press, Beijing, p 28

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the National Key Research and Development Program of China (2016YFF0203703), the NSFC Grant (51673012), and the Fundamental Research Funds for the Central Universities (PYBZ1828).

Funding

This study was funded by the National Key Research and Development Program of China (2016YFF0203703), the NSFC Grant (51673012), and the Fundamental Research Funds for the Central Universities (PYBZ1828).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yiyang Dong or Jichuan Zhang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 189)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, N., Guo, T., Ma, X. et al. Rational Rubber Extraction and Simultaneous Determination of Rubber Content and Molecular Weight Distribution in Taraxacum kok-saghyz Rodin by Size-Exclusion Chromatography. Chromatographia 82, 1459–1466 (2019). https://doi.org/10.1007/s10337-019-03773-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-019-03773-2

Keywords

Navigation