Skip to main content
Log in

Stability-Indicating Size Exclusion Chromatography Method for the Analysis of IgG mAb-Cetuximab

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

A simple and sensitive stability-indicating size exclusion chromatography method was developed and validated for the quantitative analysis of cetuximab. The effect of variety of parameters including mobile phase composition, pH, flow rate and injection volume was investigated to achieve acceptable peak resolution and the optimum condition was selected. The proposed method was validated in accordance with the International Conference on Harmonization guidelines. Method validation showed good linearity over the concentration range of 1.56–250 µg mL−1 (r2 = 0.9997), acceptable precision (relative standard deviations < 2.8%) and accuracy (recovery of 97.6–99.5%). The limits of detection and quantitation were 0.34 µg mL−1 and 1.03 µg mL−1, respectively. The robustness of the method was evaluated by small variation in buffer composition, buffer pH and flow rate and was determined to be acceptable. Assessment of the specificity and stability-indicating capability of the method using thermally stressed, photo degraded, acidic and oxidative stressed samples revealed no interference between cetuximab and excipients or force degradation products. Furthermore, evaluation of bioactivity of stressed samples showed significant differences (p < 0.05). The proposed method could be utilized as a precise and robust stability-indicating method which can be reproduced in any labs for high-throughput quantitative analysis, stability monitoring and quality control of cetuximab in pharmaceutical formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nicolaides NC, Sass PM, Grasso L (2006) Monoclonal antibodies: a morphing landscape for therapeutics. Drug Dev Res 67(10):781–789. https://doi.org/10.1002/ddr.20149

    Article  CAS  Google Scholar 

  2. Oliva A, Llabres M, Farina JB (2015) Fitting bevacizumab aggregation kinetic data with the Finke–Watzky two-step model: effect of thermal and mechanical stress. Eur J Pharm Sci 77:170–179. https://doi.org/10.1016/j.ejps.2015.06.011

    Article  CAS  PubMed  Google Scholar 

  3. Mitragotri S, Burke PA, Langer R (2014) Overcoming the challenges in administering biopharmaceuticals: formulation and delivery strategies. Nat Rev Drug Discov 13(9):655–672. https://doi.org/10.1038/nrd4363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Martinelli E, De Palma R, Orditura M, De Vita F, Ciardiello F (2009) Anti-epidermal growth factor receptor monoclonal antibodies in cancer therapy. Clin Exp Immunol 158(1):1–9. https://doi.org/10.1111/j.1365-2249.2009.03992.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Seshacharyulu P, Ponnusamy MP, Haridas D, Jain M, Ganti AK, Batra SK (2012) Targeting the EGFR signaling pathway in cancer therapy. Expert Opin Ther Targets 16(1):15–31. https://doi.org/10.1517/14728222.2011.648617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dai J, Zhang Y (2018) A middle-up approach with online capillary isoelectric focusing/mass spectrometry for in-depth characterization of cetuximab charge heterogeneity. Anal Chem 90(24):14527–14534. https://doi.org/10.1021/acs.analchem.8b04396

    Article  CAS  PubMed  Google Scholar 

  7. Sundaram S, Matathia A, Qian J, Zhang J, Hsieh M-C, Liu T, Crowley R, Parekh B, Zhou Q (2011) An innovative approach for the characterization of the isoforms of a monoclonal antibody product. In: MAbs, vol 6. Taylor & Francis, pp 505–512

  8. Ayoub D, Jabs W, Resemann A, Evers W, Evans C, Main L, Baessmann C, Wagner-Rousset E, Suckau D, Beck A (2013) Correct primary structure assessment and extensive glyco-profiling of cetuximab by a combination of intact, middle-up, middle-down and bottom-up ESI and MALDI mass spectrometry techniques. In: MAbs, vol 5. Taylor & Francis, pp 699–710

  9. Liu S, Gao W, Wang Y, He Z, Feng X, Liu BF, Liu X (2017) Comprehensive N-glycan profiling of cetuximab biosimilar candidate by NP-HPLC and MALDI-MS. PLoS One 12(1):e0170013. https://doi.org/10.1371/journal.pone.0170013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Biacchi M, Said N, Beck A, Leize-Wagner E, Francois YN (2017) Top-down and middle-down approach by fraction collection enrichment using offline capillary electrophoresis–mass spectrometry coupling: application to monoclonal antibody Fc/2 charge variants. J Chromatogr A 1498:120–127. https://doi.org/10.1016/j.chroma.2017.02.064

    Article  CAS  PubMed  Google Scholar 

  11. Daugherty AL, Mrsny RJ (2006) Formulation and delivery issues for monoclonal antibody therapeutics. Adv Drug Deliv Rev 58(5–6):686–706. https://doi.org/10.1016/j.addr.2006.03.011

    Article  CAS  PubMed  Google Scholar 

  12. Tokhadze N, Chennell P, Le Basle Y, Sautou V (2018) Stability of infliximab solutions in different temperature and dilution conditions. J Pharm Biomed Anal 150:386–395. https://doi.org/10.1016/j.jpba.2017.12.012

    Article  CAS  PubMed  Google Scholar 

  13. Farjami A, Siahi-Shadbad M, Akbarzadehlaleh P, Molavi O (2018) Development and validation of salt gradient CEX chromatography method for charge variants separation and quantitative analysis of the IgG mAb-cetuximab. Chromatographia. https://doi.org/10.1007/s10337-018-3627-9

    Article  Google Scholar 

  14. Vergote V, Burvenich C, Van de Wiele C, De Spiegeleer B (2009) Quality specifications for peptide drugs: a regulatory-pharmaceutical approach. J Pept Sci 15(11):697–710. https://doi.org/10.1002/psc.1167

    Article  CAS  PubMed  Google Scholar 

  15. Staub A, Guillarme D, Schappler J, Veuthey JL, Rudaz S (2011) Intact protein analysis in the biopharmaceutical field. J Pharm Biomed Anal 55(4):810–822. https://doi.org/10.1016/j.jpba.2011.01.031

    Article  CAS  PubMed  Google Scholar 

  16. Frokjaer S, Otzen DE (2005) Protein drug stability: a formulation challenge. Nat Rev Drug Discov 4(4):298–306. https://doi.org/10.1038/nrd1695

    Article  CAS  PubMed  Google Scholar 

  17. Shah DD, Zhang J, Hsieh MC, Sundaram S, Maity H, Mallela KMG (2018) Effect of peroxide- versus alkoxyl-induced chemical oxidation on the structure, stability, aggregation, and function of a therapeutic monoclonal antibody. J Pharm Sci 107(11):2789–2803. https://doi.org/10.1016/j.xphs.2018.07.024

    Article  CAS  PubMed  Google Scholar 

  18. Lu X, Nobrega RP, Lynaugh H, Jain T, Barlow K, Boland T, Sivasubramanian A, Vasquez M, Xu Y (2019) Deamidation and isomerization liability analysis of 131 clinical-stage antibodies. MAbs 11(1):45–57. https://doi.org/10.1080/19420862.2018.1548233

    Article  CAS  PubMed  Google Scholar 

  19. Nowak C, Katiyar JKC,SMD, Bhat A, Sun R, Ponniah J, Neill G, Mason A, Beck B, Liu A H (2017) Forced degradation of recombinant monoclonal antibodies: a practical guide. MAbs 9(8):1217–1230. https://doi.org/10.1080/19420862.2017.1368602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Xu Y, Wang D, Mason B, Rossomando T, Li N, Liu D, Cheung JK, Xu W, Raghava S, Katiyar A, Nowak C, Xiang T, Dong DD, Sun J, Beck A, Liu H (2018) Structure, heterogeneity and developability assessment of therapeutic antibodies. MAbs. https://doi.org/10.1080/19420862.2018.1553476

    Article  PubMed  PubMed Central  Google Scholar 

  21. Rathore AS, Winkle H (2009) Quality by design for biopharmaceuticals. Nat Biotechnol 27(1):26–34. https://doi.org/10.1038/nbt0109-26

    Article  CAS  PubMed  Google Scholar 

  22. Mahler HC, Friess W, Grauschopf U, Kiese S (2009) Protein aggregation: pathways, induction factors and analysis. J Pharm Sci 98(9):2909–2934. https://doi.org/10.1002/jps.21566

    Article  CAS  PubMed  Google Scholar 

  23. Ehkirch A, Goyon A, Hernandez-Alba O, Rouviere F, D’Atri V, Dreyfus C, Haeuw JF, Diemer H, Beck A, Heinisch S, Guillarme D, Cianferani S (2018) A novel online four-dimensional SECxSEC-IMxMS methodology for characterization of monoclonal antibody size variants. Anal Chem. https://doi.org/10.1021/acs.analchem.8b03333

    Article  PubMed  Google Scholar 

  24. ICH: International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (2005) Topic Q2 (R1): validation of analytical methods—text and methodology. http://www.ich.org/fleadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q2_R1/Step4/Q2_R1_Guideline.pdf. Accessed 30 Oct 2018

  25. Rambla-Alegre M, Esteve-Romero J, Carda-Broch S (2012) Is it really necessary to validate an analytical method or not? That is the question. J Chromatogr A 1232:101–109. https://doi.org/10.1016/j.chroma.2011.10.050

    Article  CAS  PubMed  Google Scholar 

  26. Shah VP, Midha KK, Findlay JW, Hill HM, Hulse JD, McGilveray IJ, McKay G, Miller KJ, Patnaik RN, Powell ML, Tonelli A, Viswanathan CT, Yacobi A (2000) Bioanalytical method validation—a revisit with a decade of progress. Pharm Res 17(12):1551–1557

    Article  CAS  PubMed  Google Scholar 

  27. Ozkan SA (2018) Analytical method validation: the importance for pharmaceutical analysis. Pharm Sci 24:1–2

    Article  Google Scholar 

  28. Riley CM, Rosanske TW (1996) Development and validation of analytical methods, vol 3. Elsevier, Oxford

    Google Scholar 

  29. Hawe A, Wiggenhorn M, van de Weert M, Garbe JH, Mahler HC, Jiskoot W (2012) Forced degradation of therapeutic proteins. J Pharm Sci 101(3):895–913. https://doi.org/10.1002/jps.22812

    Article  CAS  PubMed  Google Scholar 

  30. Maggio RM, Vignaduzzo SE, Kaufman TS (2013) Practical and regulatory considerations for stability-indicating methods for the assay of bulk drugs and drug formulations. Trends Anal Chem 49:57–70. https://doi.org/10.1016/j.trac.2013.05.008

    Article  CAS  Google Scholar 

  31. Lahlou A, Blanchet B, Carvalho M, Paul M, Astier A (2009) Mechanically-induced aggregation of the monoclonal antibody cetuximab. Ann Pharm Fr 67(5):340–352. https://doi.org/10.1016/j.pharma.2009.05.008

    Article  CAS  PubMed  Google Scholar 

  32. Hernandez-Jimenez J, Salmeron-Garcia A, Cabeza J, Velez C, Capitan-Vallvey LF, Navas N (2016) The effects of light-accelerated degradation on the aggregation of marketed therapeutic monoclonal antibodies evaluated by size-exclusion chromatography with diode array detection. J Pharm Sci 105(4):1405–1418. https://doi.org/10.1016/j.xphs.2016.01.012

    Article  CAS  PubMed  Google Scholar 

  33. Farrell A, Bones J, Cook K (2017) Optimizing protein aggregate analysis by SEC. Biopharm Int 30(10):46–46+

    CAS  Google Scholar 

  34. Martínez-Ortega A, Herrera A, Salmerón-García A, Cabeza J, Cuadros-Rodríguez L, Navas N (2016) Study and ICH validation of a reverse-phase liquid chromatographic method for the quantification of the intact monoclonal antibody cetuximab. J Pharm Anal 6(2):117–124

    Article  PubMed  Google Scholar 

  35. Stahl M (2003) Peak purity analysis in HPLC and CE using diode-array technology. Agilent Technologies, Waldbronn

    Google Scholar 

  36. ICH: International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (1995) Topic Q5C: stability testing of biotechnological/biological products. http://www.ich.org/fleadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q5C/Step4/Q5C_Guideline.pdf. Accessed 30 Oct 2018

  37. Chi EY, Krishnan S, Randolph TW, Carpenter JF (2003) Physical stability of proteins in aqueous solution: mechanism and driving forces in nonnative protein aggregation. Pharm Res 20(9):1325–1336

    Article  CAS  PubMed  Google Scholar 

  38. Philo JS (2006) Is any measurement method optimal for all aggregate sizes and types? Aaps j 8(3):E564–E571. https://doi.org/10.1208/aapsj080365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Vermeer AW, Norde W, van Amerongen A (2000) The unfolding/denaturation of immunogammaglobulin of isotype 2b and its F(ab) and F(c) fragments. Biophys J 79(4):2150–2154. https://doi.org/10.1016/s0006-3495(00)76462-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Paul M, Vieillard V, Jaccoulet E, Astier A (2012) Long-term stability of diluted solutions of the monoclonal antibody rituximab. Int J Pharm 436(1–2):282–290. https://doi.org/10.1016/j.ijpharm.2012.06.063

    Article  CAS  PubMed  Google Scholar 

  41. ICH: International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (1996) Topic Q1B: stability testing: photostability testing of new drug substances and products. https://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q1B/Step4/Q1B_Guideline.pdf. Accessed 30 Oct 2018

  42. Luo Q, Joubert MK, Stevenson R, Ketchem RR, Narhi LO, Wypych J (2011) Chemical modifications in therapeutic protein aggregates generated under different stress conditions. J Biol Chem 286(28):25134–25144. https://doi.org/10.1074/jbc.M110.160440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yan B, Yates Z, Balland A, Kleemann GR (2009) Human IgG1 hinge fragmentation as the result of H2O2-mediated radical cleavage. J Biol Chem 284(51):35390–35402. https://doi.org/10.1074/jbc.M109.064147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. De Groot AS, Scott DW (2007) Immunogenicity of protein therapeutics. Trends Immunol 28(11):482–490. https://doi.org/10.1016/j.it.2007.07.011

    Article  CAS  PubMed  Google Scholar 

  45. Wang W, Nema S, Teagarden D (2010) Protein aggregation—pathways and influencing factors. Int J Pharm 390(2):89–99. https://doi.org/10.1016/j.ijpharm.2010.02.025

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is a part of A. Farjami’s thesis, submitted for PhD degree (no. 117) and supported by Research Council, Tabriz University of Medical Sciences and we would like to thank the CinnaGen Medical Biotechnology Center for kindly providing all of the cetuximab medicinal samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammadreza Siahi-Shadbad.

Ethics declarations

Conflict of Interest

The authors state no conflict of interest.

Research Involving Human Participants and/or Animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farjami, A., Akbarzadehlaleh, P., Molavi, O. et al. Stability-Indicating Size Exclusion Chromatography Method for the Analysis of IgG mAb-Cetuximab. Chromatographia 82, 767–776 (2019). https://doi.org/10.1007/s10337-019-03703-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-019-03703-2

Keywords

Navigation