Skip to main content
Log in

Sample Enrichment by Solid-Phase Extraction for Reaching Parts per Quadrillion Levels in Environmental Analysis

  • Review
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Determination of parts per quadrillion (ppq) levels of various pollutants, contaminants, or background species in environmental samples is a challenging task for analytical chemistry. Among them, dioxins, perfluoroalkylated acids, organophosphorus and organochlorine pesticides, herbicides, and nitrosamines are found in the environment and consequently they must be determined at ppq levels. Analytical techniques alone are not able to reach these concentration levels, and they can be utilized only if sample enrichment is applied. This review is based on the literature reporting analytical methods based on solid-phase extraction or related techniques that are applied to determine ppq levels or have quantitation limits below the parts per trillion (ppt) range. Some other important aspects of the analytical process, such as calibration, precision, recovery, uncertainty, environmental matrix certified reference materials, or interlaboratory comparison, are discussed in the context of this analytical research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lindemann S, Simgen H (2014) Krypton assay in xenon at the ppq level using a gas chromatographic system and mass spectrometer. Eur Phys J C 74:2746. https://doi.org/10.1140/epjc/s10052-014-2746-1

    Article  CAS  Google Scholar 

  2. Hill MK (2010) Understanding environmental pollution, 3rd edn. Cambridge University Press, Cambridge, pp 9–21

    Book  Google Scholar 

  3. Stefanakis AI, Baker JA (2015) A review of emerging contaminants in water: classification, sources and potential risks. In: McKeown EA (ed) Impact of water pollution on human health and environmental sustainability, Information science reference. IGI Global, Hershey, pp 55–81

    Google Scholar 

  4. Vercauteren J, Pérès C, Devos C, Sandra P, Vanhaecke F, Moens L (2001) Stir bar sorptive extraction for the determination of ppq-level traces of organotin compounds in environmental samples with thermal desorption-capillary gas chromatography—ICP mass spectrometry. Anal Chem 73(7):1509–1514. https://doi.org/10.1021/ac000714s

    Article  CAS  PubMed  Google Scholar 

  5. Camino-Sánchez FJ, Zafra-Gómez A, Ruiz-García J, Vílchez JL (2013) Screening and quantification of 65 organic pollutants in drinking water by stir bar sorptive extraction-gas chromatography-triple quadrupole mass spectrometry. Food Anal Methods 6(3):854–867. https://doi.org/10.1007/s12161-012-9495-2

    Article  Google Scholar 

  6. Reiner EJ, Clement RE, Okey AB, Marvin CH (2006) Advances in analytical techniques for polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans and dioxin-like PCBs. Anal Bioanal Chem 386:791–806. https://doi.org/10.1007/s00216-006-0479-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kanan S, Samara F (2018) Dioxins and furans: a review from chemical and environmental perspectives. Trends Environ Anal Chem 17:1–13. https://doi.org/10.1016/j.teac.2017.12.001

    Article  CAS  Google Scholar 

  8. Wardencki W, Katulski RJ, Stefański J, Namieśnik J (2008) The state of the art in the field of non-stationary instruments for the determination and monitoring of atmospheric pollutants. Crit Rev Anal Chem 38(4):259–268. https://doi.org/10.1080/10408340802378254

    Article  CAS  Google Scholar 

  9. United States Environmental Protection Agency. National Primary Drinking Water Regulations: Ground Water and Drinking Water. 2018. http://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations. https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations#one. Accessed Jan 2019

  10. Lytle DA, Sorg T, Wang L, Chen A (2014) The accumulation of radioactive contaminants in drinking water distribution systems. Water Res 50:396–407. https://doi.org/10.1016/j.watres.2013.10.050

    Article  CAS  PubMed  Google Scholar 

  11. Kołacińska K, Chajduk E, Dudek J, Samczyński Z, Łokas E, Bojanowska-Czajka A, Trojanowicz M (2017) Automation of sample processing for ICP-MS determination of 90Sr radionuclide at ppq level for nuclear technology and environmental purposes. Talanta 169:216–226. https://doi.org/10.1016/j.talanta.2016.10.051

    Article  CAS  PubMed  Google Scholar 

  12. Quinto F, Golser R, Lagos M, Plaschke M, Schäfer T, Steier P, Geckeis H (2015) Accelerator mass spectrometry of actinides in ground- and seawater: an innovative method allowing for the simultaneous analysis of U, Np, Pu, Am, and Cm isotopes below ppq levels. Anal Chem 87(11):5766–5773. https://doi.org/10.1021/acs.analchem.5b00980

    Article  CAS  PubMed  Google Scholar 

  13. de la Guardia M, Garrigues S (2014) The social responsibility of environmental analysis. Trends Environ Anal Chem 3–4:7–13. https://doi.org/10.1016/j.teac.2014.09.001

    Article  CAS  Google Scholar 

  14. Wilken M, Martin GD, Hescott TL, Mendyk KK, Fishman VN, Lamparski LL, Luksemburg WJ, Maier M, Sünderhauf W, Van Ryckeghem M, Neugebauer F, de Smet G (2008) Interlaboratory comparison of the determination of chlorinated dibenzo-p-dioxins and dibenzofurans according to regulatory methods EN 1948 and EPA 1613b. Chemosphere 73:S2–S6. https://doi.org/10.1016/j.chemosphere.2007.06.099

    Article  CAS  PubMed  Google Scholar 

  15. Konieczka P, Wolska L, Namiesnik J (2010) Quality problems in determination of organic compounds in environmental samples, such as PAHs and PCBs. Trends Anal Chem 29(7):706–717. https://doi.org/10.1016/j.trac.2010.03.012

    Article  CAS  Google Scholar 

  16. Vautz W, Franzke J, Zampolli S, Elmi I, Liedtke S (2018) On the potential of ion mobility spectrometry coupled to GC pre-separation—a tutorial. Anal Chim Acta 1024:52–64. https://doi.org/10.1016/j.aca.2018.02.052

    Article  CAS  PubMed  Google Scholar 

  17. McKay AB, Perkins MJ, Field JA (2015) Large-volume injection LC–MS-MS methods for aqueous samples and organic extracts. LCGC North Am 33(1):54–68

    Google Scholar 

  18. Hutta M, Chalányová M, Halko R, Góra R, Rybár I, Pajchl M, Dokupilová S (2006) New approach to large-volume injection in reversed-phase high performance liquid chromatography: determination of atrazine and hydroxyatrazine in soil sample. J Sep Sci 29(13):1977–1987. https://doi.org/10.1002/jssc.200600049

    Article  CAS  PubMed  Google Scholar 

  19. David V, Galaon T, Aboul-Enein HY (2014) Effects of large volume injection of aliphatic alcohols as sample diluents on the retention of low hydrophobic solutes in reversed-phase liquid chromatography. J Chromatogr A 1323:115–122. https://doi.org/10.1016/j.chroma.2013.11.014

    Article  CAS  PubMed  Google Scholar 

  20. Backe WJ (2015) An ultrasensitive (parts-per-quadrillion) and SPE-free method for the quantitative analysis of estrogens in surface water. Environ Sci Technol 49(24):14311–14318. https://doi.org/10.1021/acs.est.5b04949

    Article  CAS  PubMed  Google Scholar 

  21. Capriotti AL, Cavaliere C, Giansanti P, Gubbiotti R, Samperi R, Lagana A (2010) Recent developments in matrix solid-phase dispersion extraction. J Chromatogr A 1217(16):2521–2532. https://doi.org/10.1016/j.chroma.2010.01.030

    Article  CAS  PubMed  Google Scholar 

  22. Reyes-Garcés N, Gionfriddo E, Gómez-Ríos GA, Alam MN, Boyacı E, Bojko B, Singh V, Grandy J, Pawliszyn J (2018) Advances in solid-phase microextraction and perspective on future directions. Anal Chem 90(1):302–360. https://doi.org/10.1021/acs.analchem.7b04502

    Article  CAS  PubMed  Google Scholar 

  23. Gallego E, Roca FJ, Perales JF, Guardino X (2010) Comparative study of the adsorption performance of a multi-sorbent bed (Carbotrap, Carbopack X, Carboxen 569) and a Tenax TA adsorbent tube for the analysis of volatile organic compounds (VOCs). Talanta 81(3):916–924. https://doi.org/10.1016/j.talanta.2010.01.037

    Article  CAS  PubMed  Google Scholar 

  24. Wen YY, Chen L, Li JH, Liu DY, Chen LX (2014) Recent advances in solid-phase sorbents for sample preparation prior to chromatographic analysis. Trends Anal Chem 59:26–41. https://doi.org/10.1016/j.trac.2014.03.011

    Article  CAS  Google Scholar 

  25. Medvedovici A, Bacalum E, David V (2018) Sample preparation for large scale bioanalytical studies based on liquid chromatographic technique. Biomed Chromatogr 32(1):e4137. https://doi.org/10.1002/bmc.4137

    Article  CAS  Google Scholar 

  26. Lehotay SJ, Chen Y (2018) Hits and misses in research trends to monitor contaminants in foods. Anal Bioanal Chem 410(22):5331–5351. https://doi.org/10.1007/s00216-018-1195-3

    Article  CAS  PubMed  Google Scholar 

  27. Zdolsek N, Kumric K, Kalijadis A, Trtic-Petrovic T (2017) Solid-phase extraction disk based on multiwalled carbon nanotubes for the enrichement of targeted pesticides from aqueous samples. J Sep Sci 40(7):1564–1571. https://doi.org/10.1002/jssc.201600957

    Article  CAS  PubMed  Google Scholar 

  28. Cuadros-Rodríguez L, Bagur-González MG, Sánchez-Viñas M, González-Casado A, Gómez-Sáez AM (2007) Principles of analytical calibration/quantification for the separation sciences. J Chromatogr A 1158(1–2):33–46. https://doi.org/10.1016/j.chroma.2007.03.030

    Article  CAS  PubMed  Google Scholar 

  29. Vanatta LE, Coleman DE (2007) Calibration, uncertainty, and recovery in the chromatographic sciences. J Chromatogr A 1158(1–2):47–60. https://doi.org/10.1016/j.chroma.2007.02.040

    Article  CAS  PubMed  Google Scholar 

  30. Bielicka-Daszkiewicz K, Voelkel A (2009) Theoretical and experimental methods of determination the breakthrough volume of SPE sorbents. Talanta 80(2):614–621. https://doi.org/10.1016/j.talanta.2009.07.037

    Article  CAS  PubMed  Google Scholar 

  31. Bacalum E, Radulescu M, Iorgulescu EE, David V (2011) Breakthrough parameters of SPE procedure on C18 cartridges for some polar compounds. Rev Roum Chim 56(2):137–143

    CAS  Google Scholar 

  32. Cappiello A, Famiglini G, Palma P, Pierini E, Termopoli V, Trufelli H (2008) Overcoming matrix effects in liquid chromatography-mass spectrometry. Anal Chem 80(23):9343–9348. https://doi.org/10.1021/ac8018312

    Article  CAS  PubMed  Google Scholar 

  33. Haidar Ahmad IA (2017) Necessary analytical skills and knowledge for identifying, understanding, and performing HPLC troubleshooting. Chromatograhia 80(5):705–730. https://doi.org/10.1007/s10337-016-3225-7

    Article  CAS  Google Scholar 

  34. Taylor T (2015) The most common mistakes in solid-phase extraction. LCGC North Am 33(10):802–804

    Google Scholar 

  35. Eppe G, Van Cleuvenbergen R, Haug LS, Boulanger B, Becher G, De Pauw E (2008) Empirical relationship between precision and ultra-trace concentrations of PCDD/Fs and dioxin-like PCBs in biological matrices. Chemosphere 71:379–387. https://doi.org/10.1016/j.chemosphere.2007.08.046

    Article  CAS  PubMed  Google Scholar 

  36. Foley JP, Dorsey JG (1984) Clarification of the limit of detection in chromatography. Chromatographia 18(9):503–511. https://doi.org/10.1007/BF02267236

    Article  CAS  Google Scholar 

  37. Moldoveanu SC, David V (2015) Modern sample preparation for chromatography. Elsevier, Amsterdam, pp 191–198

    Google Scholar 

  38. Namieśnik J (2001) Modern trends in monitoring and analysis of environmental pollutants. Pol J Environ Stud 10(3):127–140

    Google Scholar 

  39. Saadati N, Abdullah P, Zakaria Z, Tavakoli Sany SB, Rezayi M, Hassonizadeh H (2013) Limit of detection and limit of quantification development procedures for organochlorine pesticides analysis in water and sediment matrices. Chem Cent J 7:63. https://doi.org/10.1186/1752-153X-7-63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Vander Heyden Y, Smeyers-Verbeke J (2007) Set-up and evaluation of interlaboratory studies. J Chromatogr A 1158(1–2):158–167. https://doi.org/10.1016/j.chroma.2007.02.053

    Article  CAS  PubMed  Google Scholar 

  41. van Nuijs ALN, Lai FY, Been F, Andres-Costa M et al (2018) Multi-year inter-laboratory exercises for the analysis of illicit drugs and metabolites in wastewater: development of a quality control system. Trends Anal Chem 103:34–43. https://doi.org/10.1016/j.trac.2018.03.009

    Article  CAS  Google Scholar 

  42. Ulberth F (2006) Certified reference materials for inorganic and organic contaminants in environmental matrices. Anal Bioanal Chem 386(4):1121–1136. https://doi.org/10.1007/s00216-006-0660-6

    Article  CAS  PubMed  Google Scholar 

  43. Chauhan SK, Gupta PK, Shukla A, Gangopadhyay S (2009) Recent developments of certified reference materials for road transportation. Environ Monit Assess 156(1–4):407–418. https://doi.org/10.1007/s10661-008-0493-1

    Article  CAS  PubMed  Google Scholar 

  44. Bercaru O, Gawlik BM, Ulberth F, Vandecasteele C (2003) Reference materials for the monitoring of the aquatic environment—a review with special emphasis on organic priority pollutants. J Environ Monit 5(4):697–705

    Article  CAS  Google Scholar 

  45. Duewer DL, Lippa KA, Long SE, Murphy KE, Sharpless KE, Sniegoski LT, Welch MJ, Tani W, Umemoto M (2009) Demonstrating the comparability of certified reference materials. Anal Bioanal Chem 395(1):155–169. https://doi.org/10.1007/s00216-009-2949-8

    Article  CAS  PubMed  Google Scholar 

  46. Schimmel H, Zegers I (2015) Performance criteria for reference measurement procedures and reference materials. Clin Chem Lab Med 53(6):899–904. https://doi.org/10.1515/cclm-2015-0104

    Article  CAS  PubMed  Google Scholar 

  47. Wise SA, Poster DL, Kucklick JR, Keller JM, Vanderpol SS, Sander LC, Schantz MM (2006) Standard reference materials (SRMs) for determination of organic contaminants in environmental samples. Anal Bioanal Chem 386(4):1153–1190. https://doi.org/10.1007/s00216-006-0719-4

    Article  CAS  PubMed  Google Scholar 

  48. Plotka-Wasylka J, Szczepanska N, de la Guardia M, Namiesnik J (2016) Modern trends in solid-phase extraction: new sorbent media. Trends Anal Chem 77:26–43. https://doi.org/10.1016/j.trac.2015.10.010

    Article  CAS  Google Scholar 

  49. Andrade-Eiroa A, Canle M, Leroy-Cancellieri V, Cerda V (2016) Solid phase extraction of organic compounds: a critical review. Trends Anal Chem 80:655–667. https://doi.org/10.1016/j.trac.2015.08.014

    Article  CAS  Google Scholar 

  50. Speltini A, Sturini M, Maraschi F, Profumo F (2016) Recent trends in the application of the newest carbonaceous materials for magnetic solid-phase extraction of environmental pollutants. Trends Environ Anal Chem 10:11–23. https://doi.org/10.1016/j.teac.2016.03.001

    Article  CAS  Google Scholar 

  51. Chang RR, Jarman WM, Hennings JA (1993) Sample cleanup by solid-phase extraction for the ultratrace determination of polychlorinated dibenzo-p-dioxins and dibenzofurans in biological samples. Anal Chem 65(18):2420–2427. https://doi.org/10.1021/ac00066a005

    Article  CAS  PubMed  Google Scholar 

  52. Martín-Esteban A (2016) Recent molecularly imprinted polymer-based sample preparation techniques in environmental analysis. Trends Environ Anal Chem 9:8–14. https://doi.org/10.1016/j.teac.2016.01.001

    Article  CAS  Google Scholar 

  53. Gilart N, Borrull F, Fontanals N, Marce RM (2014) Selective materials for solid-phase extraction in environmental analysis. Trends Environ Anal Chem 1:e8–e18. https://doi.org/10.1016/j.teac.2013.11.002

    Article  CAS  Google Scholar 

  54. Valsecchi S, Polesello S, Mazzoni M, Rusconi M, Petrovic M (2015) On-line sample extraction and purification for the LC–MS determination of emerging contaminants in environmental samples. Trends Environ Anal Chem 8:27–37. https://doi.org/10.1016/j.teac.2015.08.001

    Article  CAS  Google Scholar 

  55. Medvedovici A, David V, David F, Sandra P (1998) Analysis of polyaromatic hydrocarbons in water samples, at ppt level, using on-line solid phase extraction-reversed phase liquid chromatography—fluorescence detection. Chem Anal (Warsaw) 43(1):47–56

    CAS  Google Scholar 

  56. Akiyama R, Takagai Y, Igarashi S (2004) Determination of lower sub ppt levels of environmental analytes using high-powered concentration system and high-performance liquid chromatography with fluorescence detection. Analyst 129(5):396–397. https://doi.org/10.1039/B403228D

    Article  CAS  PubMed  Google Scholar 

  57. Rawa-Adkonis M, Wolska L, Przyjazny A, Namieśnik J (2006) Sources of errors associated with the determination of PAH and PCB analytes in water samples. Anal Lett 39(11):2317–2331. https://doi.org/10.1080/00032710600755793

    Article  CAS  Google Scholar 

  58. Yazdanfar N, Shamsipur M, Ghambarian M, Esrafili A (2018) A highly sensitive dispersive microextraction method with magnetic carbon nanocomposites coupled with dispersive liquid–liquid microextraction and two miscible stripping solvents followed by GC–MS for quantification of 16 PAHs in environmental samples. Chromatographia 81(3):487–499. https://doi.org/10.1007/s10337-018-3469-5

    Article  CAS  Google Scholar 

  59. Liu C, Yu L-Q, Zhao Y-T, Lv Y-K (2018) Recent advances in metal-organic frameworks for adsorption of common aromatic pollutants. Microchim Acta 185(7):342. https://doi.org/10.1007/s00604-018-2879-2

    Article  CAS  Google Scholar 

  60. Crozier PW, Plomley JB, Matchuk L (2001) Trace level analysis of polycyclic aromatic hydrocarbons in surface waters by solid phase extraction (SPE) and gas chromatography-ion trap mass spectrometry (GC-ITMS). Analyst 126(11):1974–1979. https://doi.org/10.1039/B103723B

    Article  CAS  PubMed  Google Scholar 

  61. Eichelberger JW, Behymer TD, Budde WL (1988) Methods for the determination of organic compounds in drinking water, Report No. EPA-600/4–88/03, US Environmental Protection Agency, Cincinnati, OH, pp 325–356

  62. Cochran RE, Dongari N, Jeong H, Beránek J, Haddadi S, Shipp J, Kubátová A (2012) Determination of polycyclic aromatic hydrocarbons and their oxy-, nitro-, and hydroxy-oxidation products. Anal Chim Acta 740:93–103. https://doi.org/10.1016/j.aca.2012.05.050

    Article  CAS  PubMed  Google Scholar 

  63. Casoni D, Petre J, David V, Sarbu C (2011) Prediction of pesticides chromatographic lipophilicity from the computational molecular descriptors. J Sep Sci 34(3):247–254. https://doi.org/10.1002/jssc.201000636

    Article  CAS  PubMed  Google Scholar 

  64. Jayaraj R, Megha P, Sreedev P (2016) Organochlorine pesticides, their toxic effects on living organisms and their fate in the environment. Interdiscip Toxicol 9(3–4):90–100. https://doi.org/10.1515/intox-2016-0012

    Article  CAS  Google Scholar 

  65. Lacorte S, Ehresmann N, Barcelo D (1995) Stability of organophosphorus pesticides on disposable solid-phase extraction precolumns. Environ Sci Technol 29(11):2834–2841. https://doi.org/10.1021/es00011a020

    Article  CAS  PubMed  Google Scholar 

  66. Wang D, Weston DP, Lydy MJ (2009) Method development for the analysis of organophosphate and pyrethroid insecticides at low parts per trillion levels in water. Talanta 78(4–5):1345–1351. https://doi.org/10.1016/j.talanta.2009.02.012

    Article  CAS  PubMed  Google Scholar 

  67. Zhang H, Bayen S, Kelly BC (2015) Multi-residue analysis of legacy POPs and emerging organic contaminants in Singapore’s coastal waters using gas chromatography–triple quadrupole tandem mass spectrometry. Sci Total Environ 523:219–232. https://doi.org/10.1016/j.scitotenv.2015.04.012

    Article  CAS  PubMed  Google Scholar 

  68. Henriques Alves AC, Pontes MM, Gonçalves B, Bernardo MM, Mendes BS (2011) Determination of organophosphorous pesticides in the ppq range using a simple solid-phase extraction method combined with dispersive liquid-liquid microextraction. J Sep Sci 34(18):2475–2481. https://doi.org/10.1002/jssc.201100434

    Article  CAS  Google Scholar 

  69. U.S. Environmental Protection Agency (2003) Preliminary risk assessment of the developmental toxicity associated with exposure to perfluorooctanoic acid and its salts. Office of Pollution Prevention and Toxics, Risk Assessment Division

  70. Giesy JP, Kannan K (2001) Global distribution of perfluorooctane sulfonate in wildlife. Environ Sci Technol 35(7):1339–1342. https://doi.org/10.1021/es001834k

    Article  CAS  PubMed  Google Scholar 

  71. Martin JW, Smithwick MM, Braune BM, Hoekstra PF, Muir DCG, Mabury SA (2004) Identification of long-chain perfluorinated acids in biota from the Canadian Arctic. Environ Sci Technol 38(2):373–380. https://doi.org/10.1021/es034727+

    Article  CAS  PubMed  Google Scholar 

  72. Barreca S, Busetto M, Vitelli M, Colzani L, Clerici L, Dellavedova P (2018) On-line solid-phase extraction LC-MS/MS: a rapid and valid method for the determination of perfluorinated compounds at sub ng·L– 1 level in natural water. J Chem. https://doi.org/10.1155/2018/3780825

    Article  Google Scholar 

  73. Nobuyoshi Y, Kurunthachalam K, Sachi T, Yuichi H, Tsuyoshi O, Gert P, Toshitaka G (2004) Analysis of perfluorinated acids at parts-per-quadrillion in seawater using liquid chromatography-tandem mass spectrometry. Environ Sci Technol 38(21):5522–5528. https://doi.org/10.1021/es0492541

    Article  CAS  Google Scholar 

  74. Yamashita N, Kannan K, Taniyasu S, Horii Y, Petrick G, Toshitaka Gamo T (2005) A global survey of perfluorinated acids in oceans. Marine Poll Bull 51(8–12):658–666. https://doi.org/10.1016/j.marpolbul.2005.04.026

    Article  CAS  Google Scholar 

  75. Ayala-Cabrera JF, Santos FJ, Moyano E (2018) Negative-ion atmospheric pressure ionisation of semi-volatile fluorinated compounds for ultra-high-performance liquid chromatography tandem mass spectrometry analysis. Anal Bioanal Chem 410(20):4913–4924. https://doi.org/10.1007/s00216-018-1138-z

    Article  CAS  PubMed  Google Scholar 

  76. Bach C, Boiteux V, Hemard J, Colin A, Rosin C, Munoz JF, Dauchy X (2016) Simultaneous determination of perfluoroalkyl iodides, perfluoroalkane sulfonamides, fluorotelomer alcohols, fluorotelomer iodides and fluorotelomer acrylates and methacrylates in water and sediments using solid-phase microextraction gas chromatography/mass spectrometry. J Chromatogr A 1448:98–106. https://doi.org/10.1016/j.chroma.2016.04.025

    Article  CAS  PubMed  Google Scholar 

  77. Villaverde-de-Saa E, Racamonde I, Quintana JB, Rodil R, Cela R (2012) Ion-pair sorptive extraction of perfluorinated compounds from water with low-cost polymeric materials: polyethersulfone vs polydimethylsiloxane. Anal Chim Acta 740:50–57. https://doi.org/10.1016/j.aca.2012.06.027

    Article  CAS  PubMed  Google Scholar 

  78. Houde M, De Silva AO, Muir DCG, Robert J. Letcher RJ (2011) Monitoring of perfluorinated compounds in aquatic biota: an updated review. Environ Sci Technol 45(19):7962–7973. https://doi.org/10.1021/es104326w

    Article  CAS  PubMed  Google Scholar 

  79. Villagrasa M, López de Alda M, Barceló D (2006) Environmental analysis of fluorinated alkyl substances by liquid chromatography–(tandem) mass spectrometry: a review. Anal Bioanal Chem 386(4):953–972. https://doi.org/10.1007/s00216-006-0471-9

    Article  CAS  PubMed  Google Scholar 

  80. Richardson SD, Plewa MJ, Wagner ED, Schoeny R, Demarini DM (2007) Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: a review and roadmap for research. Mutat Res 636(1–3):178–242. https://doi.org/10.1016/j.mrrev.2007.09.001

    Article  CAS  PubMed  Google Scholar 

  81. Krasner SW, Mitch WA, McCurry DL, Hanigan D, Westerhoff P (2013) Formation, precursors, control, and occurrence of nitrosamines in drinking water: a review. Water Res 47(13):4430–4450. https://doi.org/10.1016/j.watres.2013.04.050

    Article  CAS  Google Scholar 

  82. Nawrocki J, Andrzejewski P (2011) Nitrosamines and water. J Hazard Mater 189(1–2):1–18. https://doi.org/10.1016/j.jhazmat.2011.02.005

    Article  CAS  PubMed  Google Scholar 

  83. Sharma VK (2012) Kinetics and mechanism of formation and destruction of N-nitrosodimethylamine in water—a review. Sep Purif Technol 88:1–10. https://doi.org/10.1016/j.seppur.2011.11.028

    Article  CAS  Google Scholar 

  84. McDonald JA, Harden NB, Nghiem LD, Khan SJ (2012) Analysis of N-nitrosamines in water by isotope dilution gas chromatography-electron ionisation tandem mass spectrometry. Talanta 99:146–154. https://doi.org/10.1016/j.talanta.2012.05.032

    Article  CAS  PubMed  Google Scholar 

  85. Amayreh M, Chanbasha B, Alhooshani K, Mu’azu ND, Lee HK (2015) Determination of N-nitrosamines by automated dispersive liquid-liquid microextraction integrated with gas chromatography and mass spectrometry. J Sep Sci 38(10):1741–1748. https://doi.org/10.1002/jssc.201401043

    Article  CAS  PubMed  Google Scholar 

  86. Ontario Ministry of Environment (2007) The determination of N-nitrosamines in water by gas chromatography-high resolution mass spectrometry (GC/HRMS), NITROSO-E3388, Toronto, Canada

  87. Environmental Protection US, Agency (2004) Method 521, Determination of nitrosamines in drinking water by solid phase extraction and capillary column gas chromatography with large volume injection and chemical ionization tandem mass spectrometry (MS/MS), EPA/600/R-05/054, Cincinnati

  88. Galaon T, Cruceru L, Petre J, Pascu LF, Iancu VI, Niculescu M (2016) New LC-MS/MS method for the determination of eight nitrosamines in drinking water. J Environ Prot Ecol 17(1):74–82

    CAS  Google Scholar 

  89. Boyd JM, Hrudey SE, Richardson SD, Li XF (2011) Solid-phase extraction and high-performance liquid chromatography mass spectrometry analysis of nitrosamines in treated drinking water and wastewater. Trends Anal Chem 30(9):1410–1421. https://doi.org/10.1016/j.trac.2011.06.009

    Article  CAS  Google Scholar 

  90. Planas C, Palacios O, Ventura F, Rivera J, Caixacha J (2008) Analysis of nitrosamines in water by automated SPE and isotope dilution GC/HRMS. Talanta 76(4):906–913. https://doi.org/10.1016/j.talanta.2008.04.060

    Article  CAS  PubMed  Google Scholar 

  91. Devos C, Vliegen M, Willaert B, David F, Moens L, Sandra P (2005) Automated headspace-solid-phase micro extraction-retention time locked-isotope dilution gas chromatography-mass spectrometry for the analysis of organotin compounds in water and sediment samples. J Chromatogr A 1079(1–2):408–414. https://doi.org/10.1016/j.chroma.2004.12.020

    Article  CAS  Google Scholar 

  92. Devos C, David F, Sandra P (2012) A new validated analytical method for the determination of tributyltin in water samples at the quantification level set by the European Union. J Chromatogr A 1261:151–157. https://doi.org/10.1016/j.chroma.2012.07.072

    Article  CAS  PubMed  Google Scholar 

  93. Cole RF, Mills GA, Parker R, Bolam T, Birchenough A, Kröger S, Fones GR (2015) Trends in the analysis and monitoring of organotins in the aquatic environment. Trends Environ Anal Chem 8:1–11. https://doi.org/10.1016/j.teac.2015.05.001

    Article  CAS  Google Scholar 

  94. Watanabe E, Baba K, Eun H (2007) Simultaneous determination of neonicotinoid insecticides in agricultural samples by solid-phase extraction cleanup and liquid chromatography equipped with diode-array detection. J Agric Food Chem 55(10):3798–3804. https://doi.org/10.1021/jf063140m

    Article  CAS  PubMed  Google Scholar 

  95. Wang W, Li Y, Wu Q, Wang C, Zang X, Wang Z (2012) Extraction of neonicotinoid insecticides from environmental water samples with magnetic graphene nanoparticles as adsorbent followed by determination with HPLC. Anal Methods 4:766–772. https://doi.org/10.1039/C2AY05734D

    Article  CAS  Google Scholar 

  96. Iancu VI, Radu GL (2018) Occurrence of neonicotinoids in waste water from the Bucharest treatment plant. Anal Methods 10:2691–2700. https://doi.org/10.1039/C8AY00510A

    Article  CAS  Google Scholar 

  97. Iancu VI, Galaon T, Niculescu M, Lehr CB (2017) Neonicotinoids detection by new LC-MS/MS method in Romanian surface waters. Rev Chim (Bucharest) 68(8):1716–1722

    CAS  Google Scholar 

  98. Cai Z, Sadagopa Ramanujam VM, Giblin DE, Gross ML, Spalding RF (1993) Determination of atrazine in water at low- and sub-parts-per-trillion levels by using solid-phase extraction and gas chromatography/high-resolution mass spectrometry. Anal Chem 65(1):21–26. https://doi.org/10.1021/ac00049a006

    Article  CAS  Google Scholar 

  99. Loos R, Marinov D, Sanseverino I, Napierska D, Lettieri T (2018) Review of the 1st Watch List under the Water Framework Directive and recommendations for the 2nd Watch List, EUR 29173 EN, Publications Office of the European Union, Luxembourg. https://doi.org/10.2760/614367 (JRC111198)

    Book  Google Scholar 

  100. Zuo Y, Zhang K, Zhou S (2013) Determination of estrogenic steroids and microbial and photochemical degradation of 17a-ethinylestradiol (EE2) in lake surface water, a case study. Environ Sci Process Impacts 15:1529–1535. https://doi.org/10.1039/C4AY00479E

    Article  CAS  PubMed  Google Scholar 

  101. Ripolles C, Ibanez M, Sancho JV, Lopez J, Hernandez FJ F (2014) Determination of 17β-estradiol and 17α-ethinylestradiol in water at sub-ppt levels by liquid chromatography coupled to tandem mass spectrometry. Anal Methods 6:5028–5037. https://doi.org/10.1039/C4AY00479E

    Article  CAS  Google Scholar 

  102. Lee HB, Peart TE (1998) Determination of 17 beta-estradiol and its metabolites in sewage effluent by solid-phase extraction and gas chromatography/mass spectrometry. J AOAC Int 81(6):1209–1216

    CAS  PubMed  Google Scholar 

  103. Ferguson PL, Iden CR, McElroy AE, Brownawell BJ (2001) Determination of steroid estrogens in wastewater by Iimmunoaffinity extraction coupled with HPLC-electrospray-MS. Anal Chem 73(16):3890–3895. https://doi.org/10.1021/ac010327y

    Article  CAS  PubMed  Google Scholar 

  104. Zhang H, Henion J (1999) Quantitative and qualitative determination of estrogen sulfates in human urine by liquid chromatography/tandem mass spectrometry using 96-well technology. Anal Chem 71(18):3955–3964. https://doi.org/10.1021/ac990162h

    Article  CAS  PubMed  Google Scholar 

  105. Jiménez JJ, Bernal JL, del Nozal MJ, Toribio L, Bernal J (2007) Use of SPE-GC/EIMS for residue analysis in wine elaborated from musts spiked with formulations of chlorpyriphos-methyl, methiocarb, dicofol, and cyproconazol. J Sep Sci 30(4):547–556. https://doi.org/10.1002/jssc.200600345

    Article  CAS  PubMed  Google Scholar 

  106. Seccia S, Fidente P, Barbini DA, Morrica P (2005) Multiresidue determination of nicotinoid insecticide residues in drinking water by liquid chromatography with electrospray ionization mass spectrometry. Anal Chim Acta 553(1–2):21–26. https://doi.org/10.1016/j.aca.2005.08.006

    Article  CAS  Google Scholar 

  107. Mirzaei R, Yunesian M, Nasseri S, Gholami M, Jalilzadeh E, Shoeibi S, Bidshahi HS, Mesdaghinia A (2017) An optimized SPE-LC-MS/MS method for antibiotics residue analysis in ground, surface and treated water samples by response surface methodology—central composite design. J Environ Health Sci Eng 15:article21. https://doi.org/10.1186/s40201-017-0282-2

    Article  CAS  Google Scholar 

  108. Wen Y, Ontanon I, Ferreira V, Lopez R (2018) Determination of ppq-levels of alkylmethoxypyrazines in wine by stirbar sorptive extraction combined with multidimensional gas chromatography-mass spectrometry. Food Chem 255:235–241. https://doi.org/10.1016/j.foodchem.2018.02.089

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor David.

Ethics declarations

Conflict of interest

Author Victor David declares that he has no conflict of interest. Author Toma Galaon declares that he has no conflict of interest. Elena Bacalum declares that she has no conflict of interest.

Human/animal studies

This paper does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection Recent Trends in Solid-Phase Extraction for Environmental, Food and Biological Sample Preparation with guest editors Anna Laura Capriotti, Giorgia La Barbera, and Susy Piovesana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

David, V., Galaon, T. & Bacalum, E. Sample Enrichment by Solid-Phase Extraction for Reaching Parts per Quadrillion Levels in Environmental Analysis. Chromatographia 82, 1139–1150 (2019). https://doi.org/10.1007/s10337-019-03696-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-019-03696-y

Keywords

Navigation