Skip to main content
Log in

Power Law Approach as a Convenient Protocol for Improving Peak Shapes and Recovering Areas from Partially Resolved Peaks

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Separation techniques have developed rapidly where sub-second chromatography, ultrahigh resolution recycling chromatography, and two-dimensional liquid chromatography have become potent tools for analytical chemists. Despite the popularity of high-efficiency materials and new selectivity columns, peak overlap is still observed because as the number of analytes increases, Poisson statistics predicts a higher probability of peak overlap. This work shows the application of the properties of exponential functions and Gaussian functions for virtual resolution enhancement. A mathematical protocol is derived to recover areas from overlapping signals and overcomes the previously known limitations of power laws of losing area and height information. This method also reduces noise and makes the peaks more symmetrical while maintaining the retention time and selectivity. Furthermore, it does not require a prior knowledge of the total number of components as needed in curve fitting techniques. Complex examples are shown using chiral chromatography for enantiomers, and twin-column recycling HPLC of IgG aggregates and with tailing or fronting peaks. The strengths and weaknesses of the power law protocol for area recovery are discussed with simulated and real examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kauppinen JK, Moffatt DJ, Mantsch HH, Cameron DG (1981) Appl Spectrosc 35:271–276. https://doi.org/10.1366/0003702814732634

    Article  CAS  Google Scholar 

  2. Ferrige A, Lindon J (1978) J Magn Reson (1969) 31:337–340

    Article  CAS  Google Scholar 

  3. Sinanian MM, Cook DW, Rutan SC, Wijesinghe DS (2016) Anal Chem 88:11092–11099

    Article  CAS  PubMed  Google Scholar 

  4. The United States Pharmacopeia Convention (2012) “<621> Chromatography”, vol 1, USP35-NF30  

  5. Snyder LR (1970) J Chromatogr Sci 8:692–706. https://doi.org/10.1093/chromsci/8.12.692

    Article  CAS  Google Scholar 

  6. Wahab MF, Anderson JK, Abdelrady M, Lucy CA (2014) Anal Chem 86:559–566. https://doi.org/10.1021/ac402624a

    Article  CAS  PubMed  Google Scholar 

  7. Dyson N (1998) Chromatographic Integration Methods, 2nd edn. Royal Society of Chemistry, Cornwall

    Google Scholar 

  8. Patel DC, Wahab MF, O’Haver TC, Armstrong DW (2018) Anal Chem 90:3349–3356. https://doi.org/10.1021/acs.analchem.7b04944

    Article  CAS  PubMed  Google Scholar 

  9. Wahab MF, Wimalasinghe RM, Wang Y, Barhate CL, Patel DC, Armstrong DW (2016) Anal Chem 88:8821–8826. https://doi.org/10.1021/acs.analchem.6b02260

    Article  CAS  PubMed  Google Scholar 

  10. Ciogli A, Ismail OH, Mazzoccanti G, Villani C, Gasparrini F (2018) J Sep Sci 41:1307–1318. https://doi.org/10.1002/jssc.201701406

    Article  CAS  PubMed  Google Scholar 

  11. Barhate CL, Joyce LA, Makarov AA, Zawatzky K, Bernardoni F, Schafer WA, Armstrong DW, Welch CJ, Regalado EL (2017) Chem Commun 53:509–512

    Article  CAS  Google Scholar 

  12. Wahab MF, Patel DC, Wimalasinghe RM, Armstrong DW (2017) Anal Chem 89:8177–8191. https://doi.org/10.1021/acs.analchem.7b00931

    Article  CAS  PubMed  Google Scholar 

  13. Godinho JM, Reising AE, Tallarek U, Jorgenson JW (2016) J Chromatogr A 1462:165–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gritti F, Besner S, Cormier S, Gilar M (2017) J Chromatogr A 1524:108–120

    Article  CAS  PubMed  Google Scholar 

  15. Daniel E, Nicola L (2016) Chem Commun 52:13253–13256

    Article  CAS  Google Scholar 

  16. Porath J, Flodin P (1959) Nature 183:1657–1659

    Article  CAS  PubMed  Google Scholar 

  17. Lim LW, Uzu H, Takeuchi T (2004) J Sep Sci 27:1339–1344

    Article  CAS  PubMed  Google Scholar 

  18. Davis JM, Giddings JC (1983) Anal Chem 55:418–424. https://doi.org/10.1021/ac00254a003

    Article  CAS  Google Scholar 

  19. Shalliker RA, Stevenson PG, Shock D, Mnatsakanyan M, Dasgupta PK, Guiochon G (2010) J Chromatogr A 1217:5693–5699

    Article  CAS  PubMed  Google Scholar 

  20. Shock D, Dennis GR, Guiochon G, Dasgupta PK, Shalliker RA (2011) Anal Chim Acta 703:245–249

    Article  CAS  PubMed  Google Scholar 

  21. Dasgupta PK, Chen Y, Serrano CA, Guiochon G, Liu H, Fairchild JN, Shalliker RA (2010) Anal Chem 82:10143–10150

    Article  CAS  PubMed  Google Scholar 

  22. de Juan A, Tauler R (2006) Crit Rev Anal Chem 36:163–176

    Article  CAS  Google Scholar 

  23. Chesler SN, Cram SP (1973) Anal Chem 45:1354–1359

    Article  CAS  Google Scholar 

  24. Wilks DS (2011) Statistical methods in the atmospheric sciences. Academic press, Cambridge

    Google Scholar 

  25. Gritti F, Wahab MF (2018) LCGC North Am 36(2):82–98

    CAS  Google Scholar 

  26. Gritti F, Dion M, Felinger A, Savaria M (2018) J Chromatogr A 1567:164–176

    Article  CAS  PubMed  Google Scholar 

  27. Westerberg A (1969) Anal Chem 41:1770–1777

    Article  CAS  Google Scholar 

  28. Foley JP (1987) J Chromatogr A 384:301–313

    Article  CAS  Google Scholar 

  29. Wahab MF, Patel DC, Armstrong DW (2017) J Chromatogr A 1509:163–170. https://doi.org/10.1016/j.chroma.2017.06.031

    Article  CAS  PubMed  Google Scholar 

  30. Kalambet Y, Kozmin Y, Mikhailova K, Nagaev I, Tikhonov P (2011) J Chemom 25:352–356

    Article  CAS  Google Scholar 

  31. Jansson PA (1984) Deconvolution with applications in spectroscopy. Academic Press, New York

    Google Scholar 

  32. Wahab MF, Dasgupta PK, Kadjo AF, Armstrong DW (2016) Anal Chim Acta 907:31–44. https://doi.org/10.1016/j.aca.2015.11.043

    Article  CAS  PubMed  Google Scholar 

  33. Weber HJ, Arfken GB (2003) Essential mathematical methods for physicists, ISE. Elsevier, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Farooq Wahab or Daniel W. Armstrong.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Published in Chromatographia’s 50th Anniversary Commemorative Issue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wahab, M.F., Gritti, F., O’Haver, T.C. et al. Power Law Approach as a Convenient Protocol for Improving Peak Shapes and Recovering Areas from Partially Resolved Peaks. Chromatographia 82, 211–220 (2019). https://doi.org/10.1007/s10337-018-3607-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-018-3607-0

Keywords

Navigation