Skip to main content
Log in

“Pseudostationary Ion-Exchanger” Sweeping as an Online Enrichment Technique in the Determination of Nucleosides in Urine via Micellar Electrokinetic Chromatography

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

The presented study aims to develop a new online enrichment strategy [“pseudostationary ion-exchanger” (PSIE) sweeping] for the analysis of highly hydrophilic nucleosides in urine samples with a special focus on the fundamental aspects regarding the enrichment process itself. In the first method, we employ the ionic liquid (IL)-type surfactant 1-tetradecyl-3-methylimidazolium bromide (C14MImBr) as micelle forming agent under alkaline pH conditions. It is shown that maximum enrichment efficiency can be obtained by keeping the retention factors very high within the sample zone and very low within the background electrolyte (BGE) while maintaining a sufficient resolution for the studied analytes. With this method, detection limits as low as 0.1 µg mL−1 are obtained for all analytes studied. For the nucleosides, adenosine and cytidine, a second method is developed using sodium dodecyl sulfate (SDS) as micelle forming agent under acidic pH conditions. In addition, we investigate the effect of replacing ionic buffering constituents with a zwitterionic/isoelectric buffering compound (aspartic acid) with regard to separation and enrichment efficiency. With the second method, the achieved limits of detection are as low as 0.1 µg mL−1 for Ado and 0.2 µg mL–1 for Cyd. The applicability of the two complementary methods to the analysis of the nucleosides under investigation is shown for blank and spiked human urine samples after their extraction using the commercially available phenylboronate affinity gel.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Rageh AH, Kaltz A, Pyell U (2014) Determination of urinary nucleosides via borate complexation capillary electrophoresis combined with dynamic pH junction-sweeping-large volume sample stacking as three sequential steps for their online enrichment. Anal Bioanal Chem 406:5877–5895

    Article  CAS  PubMed  Google Scholar 

  2. Rodriguez-Gonzalo E, Hernandez-Prieto R, Garcia-Gomez D, Carabias-Martinez R (2014) Development of a procedure for the isolation and enrichment of modified nucleosides and nucleobases from urine prior to their determination by capillary electrophoresis-mass spectrometry. J Pharm Biomed Anal 88:489–496

    Article  CAS  PubMed  Google Scholar 

  3. Rodriguez-Gonzalo E, Garcia-Gomez D, Carabias-Martinez R (2011) Development and validation of a hydrophilic interaction chromatography-tandem mass spectrometry method with online polar extraction for the analysis of urinary nucleosides. Potential application in clinical diagnosis. J Chromatogr A 1218:9055–9063

    Article  CAS  PubMed  Google Scholar 

  4. Cho SH, Choi MH, Lee WY, Chung BC (2009) Evaluation of urinary nucleosides in breast cancer patients before and after tumor removal. Clin Biochem 42:540–543

    Article  CAS  PubMed  Google Scholar 

  5. Wang S, Zhao X, Mao Y, Cheng Y (2007) Novel approach for developing urinary nucleosides profile by capillary electrophoresis-mass spectrometry. J Chromatogr A 1147:254–260

    Article  CAS  PubMed  Google Scholar 

  6. Helboe T, Hansen SH (1999) Separation of nucleosides using capillary electrochromatography. J Chromatogr A 836:315–324

    Article  CAS  PubMed  Google Scholar 

  7. Sasco AJ, Rey F, Reynaud C, Bobin JY, Clavel M, Niveleau A (1996) Breast cancer prognostic significance of some modified urinary nucleosides. Cancer Lett 108:157–162

    Article  CAS  PubMed  Google Scholar 

  8. Cohen AS, Terabe S, Smith JA, Karger BL (1987) High-performance capillary electrophoretic separation of bases, nucleosides, and oligonucleotides: retention manipulation via micellar solutions and metal additives. Anal Chem 59:1021–1027

    Article  CAS  PubMed  Google Scholar 

  9. Liebich HM, Xu G, Di S, Lehmann R, Häring HU, Lu P, Zhang Y (1997) Analysis of normal and modified nucleosides in urine by capillary electrophoresis. Chromatographia 45:396–401

    Article  CAS  Google Scholar 

  10. Liebich HM, Lehmann R, Xu G, Wahl HG, Häring HU (2000) Application of capillary electrophoresis in clinical chemistry: the clinical value of urinary modified nucleosides. J Chromatogr B Biomed Sci Appl 745:189–196

    Article  CAS  PubMed  Google Scholar 

  11. Xu G, Liebich HM, Lehmann R, Müller-Hagedorn S (2001) Capillary electrophoresis of urinary normal and modified nucleosides of cancer patients. Methods Mol Biol 162:459–474

    CAS  PubMed  Google Scholar 

  12. Zheng YF, Xu GW, Liu DY, Xiong JH, Zhang PD, Zhang C, Yang Q, Shen L (2002) Study of urinary nucleosides as biological marker in cancer patients analyzed by micellar electrokinetic capillary chromatography. Electrophoresis 23:4104–4109

    Article  CAS  PubMed  Google Scholar 

  13. Liebich HM, Müller-Hagedorn S, Klaus F, Meziane K, Kim KR, Frickenschmidt A, Kammerer B (2005) Chromatographic, capillary electrophoretic and matrix-assisted laser desorption ionization time-of-flight mass spectrometry analysis of urinary modified nucleosides as tumor markers. J Chromatogr A 1071:271–275

    Article  CAS  PubMed  Google Scholar 

  14. Zheng YF, Kong HW, Xiong JH, Shen L, Xu GW (2005) Clinical significance and prognostic value of urinary nucleosides in breast cancer patients. Clin Biochem 38:24–30

    Article  CAS  PubMed  Google Scholar 

  15. Szymanska E, Markuszewski MJ, Bodzioch K, Kaliszan R (2007) Development and validation of urinary nucleosides and creatinine assay by capillary electrophoresis with solid phase extraction. J Pharm Biomed Anal 44:1118–1126

    Article  CAS  PubMed  Google Scholar 

  16. Rageh AH, Pyell U (2013) Imidazolium-based ionic liquid-type surfactant as pseudostationary phase in micellar electrokinetic chromatography of highly hydrophilic urinary nucleosides. J Chromatogr A 1316:135–146

    Article  CAS  PubMed  Google Scholar 

  17. Rodemann T, Johns C, Yang WS, Haddad PR, Macka M (2005) Isoelectric buffers for capillary electrophoresis. 2. Bismorpholine derivative of a carboxylic acid as a low molecular weight isoelectric buffer. Anal Chem 77:120–125

    Article  CAS  PubMed  Google Scholar 

  18. El-Awady M, Belal F, Pyell U (2013) Robust analysis of the hydrophobic basic analytes loratadine and desloratadine in pharmaceutical preparations and biological fluids by sweeping—cyclodextrin-modified micellar electrokinetic chromatography. J Chromatogr A 1309:64–75

    Article  CAS  PubMed  Google Scholar 

  19. ICH Harmonised Tripartite Guidelines, Validation of analytical procedures: text and methodology Q2(R1) (1996) http://www.ich.org/products/guidelines/quality/article/quality-guidelines.html. Accessed 24 Apr 2018

  20. Monton MR, Quirino JP, Otsuka K, Terabe S (2001) Separation and online preconcentration by sweeping of charged analytes in electrokinetic chromatography with nonionic micelles. J Chromatogr A 939:99–108

    Article  CAS  PubMed  Google Scholar 

  21. Quirino JP, Terabe S (1998) Exceeding 5000-fold concentration of dilute analytes in micellar electrokinetic chromatography. Science 282:465–468

    Article  CAS  PubMed  Google Scholar 

  22. Quirino JP, Terabe S, Bocek P (2000) Sweeping of neutral analytes in electrokinetic chromatography with high-salt-containing matrixes. Anal Chem 72:1934–1940

    Article  CAS  PubMed  Google Scholar 

  23. El-Awady M, Huhn C, Pyell U (2012) Processes involved in sweeping under inhomogeneous electric field conditions as sample enrichment procedure in micellar electrokinetic chromatography. J Chromatogr A 1264:124–136

    Article  CAS  PubMed  Google Scholar 

  24. Pyell U, Rageh AH, El-Awady M (2017) The concept of stationary and moving boundaries modelled as accelerating or decelerating planes in the understanding of sweeping processes employed for online focusing in capillary zone electrophoresis and electrokinetic chromatography. Chromatographia 80:359–382

    Article  CAS  Google Scholar 

  25. El-Awady M, Pyell U (2013) Sweeping as a multistep enrichment process in micellar electrokinetic chromatography: the retention factor gradient effect. J Chromatogr A 1297:213–225

    Article  CAS  PubMed  Google Scholar 

  26. Yang X, Dai J, Carr PW (2003) Analysis and critical comparison of the reversed-phase and ion-exchange contributions to retention on polybutadiene coated zirconia and octadecyl silane bonded silica phases. J Chromatogr A 996:13–31

    Article  CAS  PubMed  Google Scholar 

  27. Orentaitė I, Maruška A, Pyell U (2011) Regulation of the retention factor for weak acids in micellar electrokinetic chromatography with cationic surfactant via variation of the chloride concentration. Electrophoresis 32:604–613

    Article  CAS  PubMed  Google Scholar 

  28. Kazarian AA, Hilder EF, Breadmore MC (2011) Online sample pre-concentration via dynamic pH junction in capillary and microchip electrophoresis. J Sep Sci 34:2800–2821

    Article  CAS  PubMed  Google Scholar 

  29. Britz-McKibbin P, Chen DDY (2000) Selective focusing of catecholamines and weakly acidic compounds by capillary electrophoresis using a dynamic pH junction. Anal Chem 72:1242–1252

    Article  CAS  PubMed  Google Scholar 

  30. El-Awady M, Pyell U (2014) Processes involved in sweeping as sample enrichment method in cyclodextrin-modified micellar electrokinetic chromatography of hydrophobic basic analytes. Electrophoresis 35:605–616

    Article  CAS  PubMed  Google Scholar 

  31. Britz-McKibbin P, Otsuka K, Terabe S (2002) Online focusing of flavin derivatives using dynamic pH junction-sweeping capillary electrophoresis with laser-induced fluorescence detection. Anal Chem 74:3736–3743

    Article  CAS  PubMed  Google Scholar 

  32. Britz-McKibbin P, Terabe S (2002) High sensitivity analyses of metabolites in biological samples by capillary electrophoresis using dynamic pH junction-sweeping. Chem Rec 2:397–404

    Article  CAS  PubMed  Google Scholar 

  33. Britz-McKibbin P, Markuszewski MJ, Iyanagi T, Matsuda K, Nishioka T, Terabe S (2003) Picomolar analysis of flavins in biological samples by dynamic pH junction-sweeping capillary electrophoresis with laser-induced fluorescence detection. Anal Biochem 313:89–96

    Article  CAS  PubMed  Google Scholar 

  34. Britz-McKibbin P, Ichihashi T, Tsubota K, Chen DDY, Terabe S (2003) Complementary online preconcentration strategies for steroids by capillary electrophoresis. J Chromatogr A 1013:65–76

    Article  CAS  PubMed  Google Scholar 

  35. Su AK, Chang YS, Lin CH (2004) Analysis of riboflavin in beer by capillary electrophoresis/blue light emitting diode (LED)-induced fluorescence detection combined with a dynamic pH junction technique. Talanta 64:970–974

    Article  CAS  PubMed  Google Scholar 

  36. Yu L, Li SFY (2005) Dynamic pH junction-sweeping capillary electrophoresis for online preconcentration of toxic pyrrolizidine alkaloids in Chinese herbal medicine. Electrophoresis 26:4360–4367

    Article  CAS  PubMed  Google Scholar 

  37. Chen Y, Zhang L, Cai Z, Chen G (2011) Dynamic pH junction-sweeping for online focusing of dipeptides in capillary electrophoresis with laser-induced fluorescence detection. Analyst (Cambridge, UK) 136:1852–1858

    Article  CAS  Google Scholar 

  38. Štědrý M, Jaroš M, Včeláková K, Gaš B (2003) Eigenmobilities in background electrolytes for capillary zone electrophoresis: II. Eigenpeaks in univalent weak electrolytes. Electrophoresis 24:536–547

    Article  PubMed  Google Scholar 

  39. Gaš B, Kenndler E (2004) System zones in capillary zone electrophoresis. Electrophoresis 25:3901–3912

    Article  CAS  PubMed  Google Scholar 

  40. Huhn C, Pyell U (2010) Diffusion as major source of band broadening in field-amplified sample stacking under negligible electroosmotic flow velocity conditions. J Chromatogr A 1217:4476–4486

    Article  CAS  PubMed  Google Scholar 

  41. Lundblad RL, MacDonald F (2010) Handbook of biochemistry and molecular biology, 4th edn. CRC Press, Taylor and Francis Group, LLC, Boca Raton

    Book  Google Scholar 

  42. Marrubini G, Mendoza BEC, Massolini G (2010) Separation of purine and pyrimidine bases and nucleosides by hydrophilic interaction chromatography. J Sep Sci 33:803–816

    Article  CAS  PubMed  Google Scholar 

  43. IUPAC-IUB Commission on Biochemical Nomenclature (CBN) (1974) Abbreviations and symbols of nucleic acids, polynucleotides, and their constituents. Pure Appl Chem 40:277–290

    Article  Google Scholar 

  44. Kuo KC, Phan DT, Williams N, Gehrke CW (1990) In: Gehrke CW, Kuo KC (eds) Chromatography and modification of nucleosides. Part C modified nucleosides in cancer and normal metabolism methods and applications. Elsevier, Oxford

    Google Scholar 

  45. Gehrke CW, Kuo KC, Davis GE, Suits RD, Waalkes TP, Borek E (1978) Quantitative high-performance liquid chromatography of nucleosides in biological materials. J Chromatogr 150:455–476

    Article  CAS  PubMed  Google Scholar 

  46. van de Merbel NC (2008) Quantitative determination of endogenous compounds in biological samples using chromatographic techniques. Trends Anal Chem 27:924–933

    Article  CAS  Google Scholar 

  47. Rageh AH, Pyell U (2015) Boronate affinity-assisted MEKC separation of highly hydrophilic urinary nucleosides using imidazolium-based ionic liquid type surfactant as pseudostationary phase. Electrophoresis 36:784–795

    Article  CAS  PubMed  Google Scholar 

  48. Hjertén S, Valtcheva L, Elenbring K, Liao JL (1995) Fast, high-resolution (capillary) electrophoresis in buffers designed for high field strengths. Electrophoresis 16:584–594

    Article  PubMed  Google Scholar 

  49. Reichenbächer M, Einax JW (2011) Challenges in analytical quality assurance. Springer, Berlin Heidelberg

    Book  Google Scholar 

  50. Wätzig H (1995) Appropriate calibration functions for capillary electrophoresis I. Precision and sensitivity using peak areas and heights. J Chromatogr A 700:1–7

    Article  Google Scholar 

  51. Wätzig H, Degenhardt M, Kunkel A (1998) Strategies for capillary electrophoresis. Method development and validation for pharmaceutical and biological applications. Electrophoresis 19:2695–2752

    Article  PubMed  Google Scholar 

  52. European Pharmacopoeia (7.8) (2013) European directorate for the quality of medicines & healthcare (EDQM), 7th edn, online version. Strasbourg

  53. Quirino JP, Terabe S (1998) Online concentration of neutral analytes for micellar electrokinetic chromatography. 3. Stacking with reverse migrating micelles. Anal Chem 70:149–157

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the workshops of the Department of Chemistry, University of Marburg for the development of the data recording unit.

Funding

A. H. Rageh thanks the Egyptian Ministry of Higher Education and the Ministry of State for Scientific Research and the Deutscher Akademischer Austauschdienst (DAAD) for funding her PhD scholarship through German Egyptian Research Long-Term Scholarship program (GERLS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ute Pyell.

Ethics declarations

Conflict of interest

A. H. Rageh declares that she has no conflict of interest. U. Pyell declares that she has no conflict of interest.

Ethical approval

All procedures performed in  this study involving a human participant were in accordance with the 1964 Helsinki Declaration and its later amendments. For experiments with human urine, informed consent was obtained from the volunteer. This article does not contain any studies with animals performed by any of the authors.

Additional information

Published in Chromatographia’s 50th Anniversary Commemorative Issue.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 139 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rageh, A.H., Pyell, U. “Pseudostationary Ion-Exchanger” Sweeping as an Online Enrichment Technique in the Determination of Nucleosides in Urine via Micellar Electrokinetic Chromatography. Chromatographia 82, 325–345 (2019). https://doi.org/10.1007/s10337-018-3570-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-018-3570-9

Keywords

Navigation